Compartir en las Redes !
Notas de energías renovables
Re: Notas de energías renovables
Agua salada, ¿nueva fuente de energía? Una empresa francesa acepta el desafío
Redacción Enerzine 15/07/2024
La empresa francesa Sweetch Energy anunció recientemente una importante innovación en el campo de la energía osmótica, ofreciendo una solución sostenible para la producción de electricidad a partir de agua salada. La tecnología podría transformar el panorama energético al explotar un recurso natural abundante y renovable.
Sweetch Energy, empresa francesa especializada en tecnologías energéticas, ha desarrollado un nuevo método de producción de electricidad basado en energía osmótica. El sistema utiliza la diferencia de salinidad entre el agua dulce y salada para generar electricidad de forma continua y predecible.
El proceso se basa en el uso de membranas nanoestructuradas y electrodos específicos que permiten aprovechar eficazmente el gradiente de salinidad. Esta tecnología, denominada INOD™ (Ionic Nano Osmotic Diffusion), representa un avance significativo en el campo de las energías renovables.
Rendimiento notable
Las pruebas realizadas por Sweetch Energy han demostrado resultados impresionantes. La tecnología INOD™ ha logrado una densidad de potencia de 4,3 vatios por metro cuadrado, superando el rendimiento de tecnologías osmóticas anteriores. Esta notable mejora allana el camino para la explotación a gran escala de la energía osmótica.
Nicolas Heuzé, director ejecutivo y cofundador de Sweetch Energy, brindó su visión: “Estamos encantados de anunciar este importante paso en el desarrollo de nuestra tecnología INOD™. Estos resultados validan nuestro enfoque único y confirman el potencial de la energía osmótica como fuente de energía renovable confiable y competitiva.»
Considerable potencial energético
La energía osmótica representa un potencial energético global estimado en 27.000 TWh al año. Este recurso equivale al consumo eléctrico anual de China y podría cubrir hasta el 40% de las necesidades energéticas europeas. La explotación de esta fuente de energía renovable contribuiría significativamente a la reducción de las emisiones de gases de efecto invernadero.
La tecnología desarrollada por Sweetch Energy destaca por su capacidad de producir electricidad de forma continua y predecible, a diferencia de otras fuentes de la energía solar o eólica. Esta solución se vuelve especialmente atractiva para la estabilidad de las redes eléctricas.
La innovación de Sweetch Energy ha sido elogiada por la comunidad científica internacional. Los resultados de su investigación fueron publicados en la revista Nature Nanotechnology, confirmando la validez e importancia de su trabajo en el campo de las energías renovables.
El profesor Alexander van Oudenhoven de la Universidad Tecnológica de Delft (Países Bajos) comentó: “Los resultados obtenidos por Sweetch Energy son realmente impresionantes. Demuestran que la energía osmótica ahora puede considerarse una opción viable para la producción de electricidad renovable a gran escala.»
Perspectivas de futuro
Sobre la base de estos resultados prometedores, Sweetch Energy planea continuar el desarrollo de su tecnología INOD™. La compañía planea construir una planta piloto de 1 MW para 2027, seguida de una planta comercial de 10 MW para 2030.
https://www.enerzine.com/leau-salee-nou ... 18-2024-07
Redacción Enerzine 15/07/2024
La empresa francesa Sweetch Energy anunció recientemente una importante innovación en el campo de la energía osmótica, ofreciendo una solución sostenible para la producción de electricidad a partir de agua salada. La tecnología podría transformar el panorama energético al explotar un recurso natural abundante y renovable.
Sweetch Energy, empresa francesa especializada en tecnologías energéticas, ha desarrollado un nuevo método de producción de electricidad basado en energía osmótica. El sistema utiliza la diferencia de salinidad entre el agua dulce y salada para generar electricidad de forma continua y predecible.
El proceso se basa en el uso de membranas nanoestructuradas y electrodos específicos que permiten aprovechar eficazmente el gradiente de salinidad. Esta tecnología, denominada INOD™ (Ionic Nano Osmotic Diffusion), representa un avance significativo en el campo de las energías renovables.
Rendimiento notable
Las pruebas realizadas por Sweetch Energy han demostrado resultados impresionantes. La tecnología INOD™ ha logrado una densidad de potencia de 4,3 vatios por metro cuadrado, superando el rendimiento de tecnologías osmóticas anteriores. Esta notable mejora allana el camino para la explotación a gran escala de la energía osmótica.
Nicolas Heuzé, director ejecutivo y cofundador de Sweetch Energy, brindó su visión: “Estamos encantados de anunciar este importante paso en el desarrollo de nuestra tecnología INOD™. Estos resultados validan nuestro enfoque único y confirman el potencial de la energía osmótica como fuente de energía renovable confiable y competitiva.»
Considerable potencial energético
La energía osmótica representa un potencial energético global estimado en 27.000 TWh al año. Este recurso equivale al consumo eléctrico anual de China y podría cubrir hasta el 40% de las necesidades energéticas europeas. La explotación de esta fuente de energía renovable contribuiría significativamente a la reducción de las emisiones de gases de efecto invernadero.
La tecnología desarrollada por Sweetch Energy destaca por su capacidad de producir electricidad de forma continua y predecible, a diferencia de otras fuentes de la energía solar o eólica. Esta solución se vuelve especialmente atractiva para la estabilidad de las redes eléctricas.
La innovación de Sweetch Energy ha sido elogiada por la comunidad científica internacional. Los resultados de su investigación fueron publicados en la revista Nature Nanotechnology, confirmando la validez e importancia de su trabajo en el campo de las energías renovables.
El profesor Alexander van Oudenhoven de la Universidad Tecnológica de Delft (Países Bajos) comentó: “Los resultados obtenidos por Sweetch Energy son realmente impresionantes. Demuestran que la energía osmótica ahora puede considerarse una opción viable para la producción de electricidad renovable a gran escala.»
Perspectivas de futuro
Sobre la base de estos resultados prometedores, Sweetch Energy planea continuar el desarrollo de su tecnología INOD™. La compañía planea construir una planta piloto de 1 MW para 2027, seguida de una planta comercial de 10 MW para 2030.
https://www.enerzine.com/leau-salee-nou ... 18-2024-07
Re: Notas de energías renovables
Scientists find biology hack to quadruple electric aircraft battery life
Ameya Paleja, 12/07/2024

Representational image of an electric aircraft that will be powered by the improved battery.
Researchers at the Lawrence Berkeley National Laboratory and the University of Michigan turned to modern biology laboratories to seek methods to improve battery performance in electric aircraft. Technology helping us better understand our cells could also unlock a future of emission-free air travel.
The types of batteries we have developed thus far have made electrification of road-based transport relatively easy. These batteries can deliver sustained energy for prolonged periods, helping cars and trucks move over increased distances.
Flying, though, presents a different type of challenge. An aircraft requires intense power during takeoff and landing while demanding sustained power for the duration of the flight. For air travel to attain sustainability through the use of battery technology, a battery needs to perform this dual role.
According to Youngmin Ko, a postdoctoral researcher at Berkeley Lab, conventional batteries are not designed to fulfill this dual role. This is partly due to our lack of understanding of how complex reactions work at the anode, cathode, and between the electrolyte.
How can omics help?
Biologists have been trying to understand the role of cell components and their complex interactions for centuries. Researchers have taken a broader approach in the past few decades and studied them along with other components instead of working in isolation.
In biology, this is referred to as omics—the sum of the constituents of the cell—and has helped researchers better understand the roles of the genome (genomics), proteins (proteomics), and metabolites (metabolomics).
Researchers at Berkeley and the University of Michigan also used this approach to understand the reactions between the multiple components of the electric battery.
They focused their attention on lithium-ion batteries, which are extensively used in the market today but have yet to be able to address long-haul transportation demands.
Improvements in battery
Using the omics approach, the researchers determined that the inability of lithium batteries to provide high power for sustained periods was not a problem of the anode, as believed. Instead, it was the cathode that was the root cause.
Battery better suited for electric aircraft.
Tested at the single-cell level, the new electrolyte developed at Lawrence Berkeley National Laboratory maintains the power-to-energy ratio needed to support electric flight for four times longer than conventional batteries. Image credit: (And Battery Aero)
The researchers found that when certain salts were mixed in the electrolyte, they formed a protective coating around the cathode, making it resistant to corrosion and improving its performance.
“We found that mixing salts in the electrolyte could suppress the reactivity of typically reactive species, which formed a stabilizing, corrosion-resistant coating,” added Ko in a press release.
For this project, the researchers partnered with the industry. They used their new knowledge to design a new battery for electric aircraft. The team found their new battery design was four times better than conventional batteries in terms of how many cycles it could maintain the power-to-energy ratio needed for flight.
The team is now working to build a battery capacity of 100 kWh to carry out a test flight of an electric vertical takeoff and landing (eVTOL) aircraft as early as 2025.
“Heavy transport sectors, including aviation, have been underexplored in electrification,” said Brett Helms, a staff scientist at the Berkeley Lab. “Our work redefines what’s possible, pushing the boundaries of battery technology to enable deeper decarbonization.”
The researchers will also continue to use the omics approach to explore interactions of other battery components and improve battery performance in the future.
The research findings were published in the journal Joule (NB! Por subscripción).
https://interestingengineering.com/ener ... c-aircraft
Ameya Paleja, 12/07/2024

Representational image of an electric aircraft that will be powered by the improved battery.
Researchers at the Lawrence Berkeley National Laboratory and the University of Michigan turned to modern biology laboratories to seek methods to improve battery performance in electric aircraft. Technology helping us better understand our cells could also unlock a future of emission-free air travel.
The types of batteries we have developed thus far have made electrification of road-based transport relatively easy. These batteries can deliver sustained energy for prolonged periods, helping cars and trucks move over increased distances.
Flying, though, presents a different type of challenge. An aircraft requires intense power during takeoff and landing while demanding sustained power for the duration of the flight. For air travel to attain sustainability through the use of battery technology, a battery needs to perform this dual role.
According to Youngmin Ko, a postdoctoral researcher at Berkeley Lab, conventional batteries are not designed to fulfill this dual role. This is partly due to our lack of understanding of how complex reactions work at the anode, cathode, and between the electrolyte.
How can omics help?
Biologists have been trying to understand the role of cell components and their complex interactions for centuries. Researchers have taken a broader approach in the past few decades and studied them along with other components instead of working in isolation.
In biology, this is referred to as omics—the sum of the constituents of the cell—and has helped researchers better understand the roles of the genome (genomics), proteins (proteomics), and metabolites (metabolomics).
Researchers at Berkeley and the University of Michigan also used this approach to understand the reactions between the multiple components of the electric battery.
They focused their attention on lithium-ion batteries, which are extensively used in the market today but have yet to be able to address long-haul transportation demands.
Improvements in battery
Using the omics approach, the researchers determined that the inability of lithium batteries to provide high power for sustained periods was not a problem of the anode, as believed. Instead, it was the cathode that was the root cause.
Battery better suited for electric aircraft.
Tested at the single-cell level, the new electrolyte developed at Lawrence Berkeley National Laboratory maintains the power-to-energy ratio needed to support electric flight for four times longer than conventional batteries. Image credit: (And Battery Aero)
The researchers found that when certain salts were mixed in the electrolyte, they formed a protective coating around the cathode, making it resistant to corrosion and improving its performance.
“We found that mixing salts in the electrolyte could suppress the reactivity of typically reactive species, which formed a stabilizing, corrosion-resistant coating,” added Ko in a press release.
For this project, the researchers partnered with the industry. They used their new knowledge to design a new battery for electric aircraft. The team found their new battery design was four times better than conventional batteries in terms of how many cycles it could maintain the power-to-energy ratio needed for flight.
The team is now working to build a battery capacity of 100 kWh to carry out a test flight of an electric vertical takeoff and landing (eVTOL) aircraft as early as 2025.
“Heavy transport sectors, including aviation, have been underexplored in electrification,” said Brett Helms, a staff scientist at the Berkeley Lab. “Our work redefines what’s possible, pushing the boundaries of battery technology to enable deeper decarbonization.”
The researchers will also continue to use the omics approach to explore interactions of other battery components and improve battery performance in the future.
The research findings were published in the journal Joule (NB! Por subscripción).
https://interestingengineering.com/ener ... c-aircraft
Re: Notas de energías renovables
Otra nota de prensa interesante.
Revolutionary grid-scale wave energy generator deployed in Hawaii
David Szondy, 26/07/2024
https://assets.newatlas.com/dims4/defau ... -1-1-1.jpg
The OE-35 uses a Wells turbine Ocean Energy
Ocean Energy has deployed its 826-tonne wave energy converter buoy OE-35 at the US Navy's Wave Energy Test Site off the coast of the island of Oahu ahead of it being hooked up to Hawaii's electricity grid.
Measuring 125 x 59 ft (38 x 18 m) with a draft of 31 ft (9 m), the OE-35 was already a familiar sight in Kaneohe Bay on the Windward side of Oahu. Fixed just north of Mōkapu Peninsula, which is home to a US Marine Corps base that I became very familiar with years ago when its F-18 fighters used to go blasting over my anchored boat in the early morning.
The system has not only been tested in Hawaii, but also in Scotland as part of a US$12-million project funded by the US Department of Energy's office of Energy Efficiency and Renewable Energy and the Sustainable Energy Authority of Ireland (SEAI). With a potential output of 1.25 MW, OE-35 harnesses energy from the waves using a remarkable double-flow air system.
OE-35
Some wave power systems work by using passing waves to compress a column of air that drives a turbine as the wave passes and the air expands. However, these usually work like a piston engine, with a power stroke followed by a dead period while air is vented and the system resets itself in anticipation of the next wave.
OE-35 is different in that it uses a turbine that works on the principle of the Wells turbine that was invented by Alan Arthur Wells of Queen's University Belfast in the late 1970s. This is a low-pressure air turbine that rotates continuously in one direction independent of the direction of the air flow. In other words, as the wave compresses the air in three chambers inside the buoy, the turbine spins. Then the air expands and the flow reverses but the turbine still spins in exactly the same direction. This eliminates the need for complex mechanisms and valves to deal with the bidirectional air flow.
It's not the most efficient way of generating power because the turbine blades have a higher drag coefficient than conventional turbines and the system is prone to stall. However, it works well enough that the subsidiary of Ocean Energy Group Ireland expects to soon commission the OE-35 following final tests and the system will be connected by undersea cable to the state's electricity grid.

OE-35 on stationOcean Energy
At 1.25 MW, it isn't much against a state that consumes many orders of magnitude more, but it could be a harbinger of things to come.
"Following over a decade and a half of design, trials, testing and building, we are excited finally to be able to take this major step towards commercialization with our world-class OE-35 device," said Professor Tony Lewis, Ocean Energy's Chief Technology Officer. "This internationally significant project couldn't come online at a more critical time for the US and Ireland as the world needs to accelerate the pace of decarbonization with new and innovative technologies."
Source: Ocean Energy
https://newatlas.com/energy/revolutiona ... ii-energy/
Revolutionary grid-scale wave energy generator deployed in Hawaii
David Szondy, 26/07/2024
https://assets.newatlas.com/dims4/defau ... -1-1-1.jpg
The OE-35 uses a Wells turbine Ocean Energy
Ocean Energy has deployed its 826-tonne wave energy converter buoy OE-35 at the US Navy's Wave Energy Test Site off the coast of the island of Oahu ahead of it being hooked up to Hawaii's electricity grid.
Measuring 125 x 59 ft (38 x 18 m) with a draft of 31 ft (9 m), the OE-35 was already a familiar sight in Kaneohe Bay on the Windward side of Oahu. Fixed just north of Mōkapu Peninsula, which is home to a US Marine Corps base that I became very familiar with years ago when its F-18 fighters used to go blasting over my anchored boat in the early morning.
The system has not only been tested in Hawaii, but also in Scotland as part of a US$12-million project funded by the US Department of Energy's office of Energy Efficiency and Renewable Energy and the Sustainable Energy Authority of Ireland (SEAI). With a potential output of 1.25 MW, OE-35 harnesses energy from the waves using a remarkable double-flow air system.
OE-35
Some wave power systems work by using passing waves to compress a column of air that drives a turbine as the wave passes and the air expands. However, these usually work like a piston engine, with a power stroke followed by a dead period while air is vented and the system resets itself in anticipation of the next wave.
OE-35 is different in that it uses a turbine that works on the principle of the Wells turbine that was invented by Alan Arthur Wells of Queen's University Belfast in the late 1970s. This is a low-pressure air turbine that rotates continuously in one direction independent of the direction of the air flow. In other words, as the wave compresses the air in three chambers inside the buoy, the turbine spins. Then the air expands and the flow reverses but the turbine still spins in exactly the same direction. This eliminates the need for complex mechanisms and valves to deal with the bidirectional air flow.
It's not the most efficient way of generating power because the turbine blades have a higher drag coefficient than conventional turbines and the system is prone to stall. However, it works well enough that the subsidiary of Ocean Energy Group Ireland expects to soon commission the OE-35 following final tests and the system will be connected by undersea cable to the state's electricity grid.

OE-35 on stationOcean Energy
At 1.25 MW, it isn't much against a state that consumes many orders of magnitude more, but it could be a harbinger of things to come.
"Following over a decade and a half of design, trials, testing and building, we are excited finally to be able to take this major step towards commercialization with our world-class OE-35 device," said Professor Tony Lewis, Ocean Energy's Chief Technology Officer. "This internationally significant project couldn't come online at a more critical time for the US and Ireland as the world needs to accelerate the pace of decarbonization with new and innovative technologies."
Source: Ocean Energy
https://newatlas.com/energy/revolutiona ... ii-energy/
Re: Notas de energías renovables
Microwave technique recovers 87% of batteries' lithium in 15 minutes
Michael Franco, 30/07/2024

Freeing lithium from the very batteries they power could go a long way toward meeting an ever-increasing demand for the element - Depositphotos
Lithium is a finite resource, and the more we lock inside rechargeable batteries, the less we have to use. A new speedy method to free the element from such sources could be a game changer in terms of the material's availability.
Thanks to our modern day way of purchasing rechargeable everything – including cars – the demand for the lithium-ion batteries that power much of our consumer technology has been skyrocketing. Currently valued at approximately $65 billion, the market for lithium-ion batteries is expected to grow by 23% in the next eight years.
As a relatively lightweight material with the ability to store a lot of energy, the value of lithium is clear. But mining the element can be environmentally destructive, and geopolitical concerns in several of the areas where it is plentiful can threaten supply chains. Plus we've previously reported that there are predictions that current lithium mines will only be able to produce half of what's needed to satisfy demand by 2030.
Taking those factors into account, it's important to either find ways to produce lithium-free battery technologies, look to new methods and sources for extracting it, or find ways to recycle the lithium stored in used up batteries. Yet recycling lithium can be time consuming, use harsh chemicals, and lead to the recovery of less than 5% of the total amount of the element originally used.
Nuking it
So researchers at Rice University came up with a better solution. They started by using chemicals known as deep eutectic solvents (DES), which are eco-friendly liquids that can precipitate lithium and other metals out of a solution.
“The recovery rate is so low because lithium is usually precipitated last after all other metals, so our goal was to figure out how we can target lithium specifically,” said Salma Alhashim, a Rice doctoral alumna who is one of the study’s lead authors. “Here we used a DES that is a mixture of choline chloride and ethylene glycol, knowing from our previous work that during leaching in this DES, lithium gets surrounded by chloride ions from the choline chloride and is leached out into solution.”
Normally a compound needs to be heated in order to force metals to precipitate out and in the case of lithium-containing compounds, an oil bath usually provides that heat source. But the process takes a fair bit of time during which the lithium compounds can begin to degrade.
To speed things up, the Rice team decided to give microwaves a try, knowing that the choline chloride that leads to the isolation of the lithium is very good at absorbing microwave radiation.
15-minute milestone
The speed boost was impressive. The researchers were able to precipitate out the lithium almost 100 times faster than an oil bath. In fact, it took them just 15 minutes to get back 87% of the lithium – a process that would take 12 hours using an oil bath.
“This allowed us to leach lithium selectively over other metals,” said Sohini Bhattacharyya, one of the other lead authors and a postdoctoral fellow in the Nanomaterials Laboratory. “Using microwave radiation for this process is akin to how a kitchen microwave heats food quickly. The energy is transferred directly to the molecules, making the reaction occur much faster than conventional heating methods.”
The researchers say the method can also be tailored to target other elements by tuning the DES composition, so it could have the ability to recover other metals like cobalt or nickel from batteries. The team also highlights the eco-friendly benefits of its approach.
“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” said Pulickel Ajayan, the corresponding author on the study and department chair of materials science and nanoengineering.
The work has been published in the journal Advanced Functional Materials (NB! Por subscripción)
Source: Rice University
https://newatlas.com/energy/microwave-l ... recycling/
Michael Franco, 30/07/2024

Freeing lithium from the very batteries they power could go a long way toward meeting an ever-increasing demand for the element - Depositphotos
Lithium is a finite resource, and the more we lock inside rechargeable batteries, the less we have to use. A new speedy method to free the element from such sources could be a game changer in terms of the material's availability.
Thanks to our modern day way of purchasing rechargeable everything – including cars – the demand for the lithium-ion batteries that power much of our consumer technology has been skyrocketing. Currently valued at approximately $65 billion, the market for lithium-ion batteries is expected to grow by 23% in the next eight years.
As a relatively lightweight material with the ability to store a lot of energy, the value of lithium is clear. But mining the element can be environmentally destructive, and geopolitical concerns in several of the areas where it is plentiful can threaten supply chains. Plus we've previously reported that there are predictions that current lithium mines will only be able to produce half of what's needed to satisfy demand by 2030.
Taking those factors into account, it's important to either find ways to produce lithium-free battery technologies, look to new methods and sources for extracting it, or find ways to recycle the lithium stored in used up batteries. Yet recycling lithium can be time consuming, use harsh chemicals, and lead to the recovery of less than 5% of the total amount of the element originally used.
Nuking it
So researchers at Rice University came up with a better solution. They started by using chemicals known as deep eutectic solvents (DES), which are eco-friendly liquids that can precipitate lithium and other metals out of a solution.
“The recovery rate is so low because lithium is usually precipitated last after all other metals, so our goal was to figure out how we can target lithium specifically,” said Salma Alhashim, a Rice doctoral alumna who is one of the study’s lead authors. “Here we used a DES that is a mixture of choline chloride and ethylene glycol, knowing from our previous work that during leaching in this DES, lithium gets surrounded by chloride ions from the choline chloride and is leached out into solution.”
Normally a compound needs to be heated in order to force metals to precipitate out and in the case of lithium-containing compounds, an oil bath usually provides that heat source. But the process takes a fair bit of time during which the lithium compounds can begin to degrade.
To speed things up, the Rice team decided to give microwaves a try, knowing that the choline chloride that leads to the isolation of the lithium is very good at absorbing microwave radiation.
15-minute milestone
The speed boost was impressive. The researchers were able to precipitate out the lithium almost 100 times faster than an oil bath. In fact, it took them just 15 minutes to get back 87% of the lithium – a process that would take 12 hours using an oil bath.
“This allowed us to leach lithium selectively over other metals,” said Sohini Bhattacharyya, one of the other lead authors and a postdoctoral fellow in the Nanomaterials Laboratory. “Using microwave radiation for this process is akin to how a kitchen microwave heats food quickly. The energy is transferred directly to the molecules, making the reaction occur much faster than conventional heating methods.”
The researchers say the method can also be tailored to target other elements by tuning the DES composition, so it could have the ability to recover other metals like cobalt or nickel from batteries. The team also highlights the eco-friendly benefits of its approach.
“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” said Pulickel Ajayan, the corresponding author on the study and department chair of materials science and nanoengineering.
The work has been published in the journal Advanced Functional Materials (NB! Por subscripción)
Source: Rice University
https://newatlas.com/energy/microwave-l ... recycling/
Re: Notas de energías renovables
Rice lab finds faster, cleaner way to extract lithium from battery waste
Microwave-based process boasts 50% recovery rate in 30 seconds
The “white gold” of clean energy, lithium is a key ingredient in batteries large and small, from those powering phones and laptops to grid-scale energy storage systems.
Though relatively abundant, the silvery-white metal could soon be in short supply due to a complex sourcing landscape impacted by the electric vehicle (EV) boom, net-zero goals and geopolitical factors. Valued at over $65 billion in 2023, the lithium-ion battery (LIB) global market is expected to grow by over 23% in the next eight years, likely heightening existing challenges in lithium supply.
What’s more, recovering lithium from spent batteries is environmentally taxing and highly inefficient ⎯ something a team of Rice University researchers led by Pulickel Ajayan is working to change.
In their latest study published in Advanced Functional Materials, the researchers describe a rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent. Findings show the new process can retrieve as much as 50% of the lithium in spent LIB cathodes in as little as 30 seconds, overcoming a significant bottleneck in LIB recycling technology.
“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” said Sohini Bhattacharyya, one of the two lead authors on the study and a Rice Academy Postdoctoral Fellow in the Nanomaterials Laboratory run by Ajayan. “It’s therefore really important to recycle spent LIBs to recover these metals.”
Conventional recycling methods often involve harsh acids, while alternative eco-friendly solvents like deep eutectic solvents (DESs) have struggled with efficiency and economic viability. Moreover, current recycling methods recover less than 5% of lithium, largely due to contamination and loss during the process as well as the energy intensive nature of recovery.
“The recovery rate is so low because lithium is usually precipitated last after all other metals, so our goal was to figure out how we can target lithium specifically,” said Salma Alhashim, a Rice doctoral alumna who is the study’s other lead author. “Here we used a DES that is a mixture of choline chloride and ethylene glycol, knowing from our previous work that during leaching in this DES, lithium gets surrounded by chloride ions from the choline chloride and is leached out into solution.”
In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process. Knowing that of the two substances only choline chloride is good at absorbing microwaves, the researchers submerged the battery waste material in the solvent and blasted it with microwave radiation.
“This allowed us to leach lithium selectively over other metals,” Bhattacharyya said. “Using microwave radiation for this process is akin to how a kitchen microwave heats food quickly. The energy is transferred directly to the molecules, making the reaction occur much faster than conventional heating methods.”
Compared to conventional heating methods like an oil bath, microwave-assisted heating can achieve similar efficiencies almost 100 times faster. For example, using the microwave-based process, the team found that it took 15 minutes to leach 87% of the lithium as opposed to the 12 hours needed to obtain the same recovery rate via oil bath heating.
“This also shows that selectivity towards specific elements can be achieved simply by tuning the DES composition,” Alhashim said. “Another advantage is solvent stability: Because the oil bath method takes so much longer, the solvent begins to decompose, whereas this does not happen with the short heating cycles of a microwave.”
This breakthrough method could dramatically improve the economics and environmental impact of LIB recycling, providing a sustainable solution to a growing global issue.
“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” said Ajayan, the corresponding author on the study and Rice’s Benjamin M. and Mary Greenwood Anderson Professor of Engineering and professor and department chair of materials science and nanoengineering.
https://news.rice.edu/news/2024/rice-la ... tery-waste
Microwave-based process boasts 50% recovery rate in 30 seconds
The “white gold” of clean energy, lithium is a key ingredient in batteries large and small, from those powering phones and laptops to grid-scale energy storage systems.
Though relatively abundant, the silvery-white metal could soon be in short supply due to a complex sourcing landscape impacted by the electric vehicle (EV) boom, net-zero goals and geopolitical factors. Valued at over $65 billion in 2023, the lithium-ion battery (LIB) global market is expected to grow by over 23% in the next eight years, likely heightening existing challenges in lithium supply.
What’s more, recovering lithium from spent batteries is environmentally taxing and highly inefficient ⎯ something a team of Rice University researchers led by Pulickel Ajayan is working to change.
In their latest study published in Advanced Functional Materials, the researchers describe a rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent. Findings show the new process can retrieve as much as 50% of the lithium in spent LIB cathodes in as little as 30 seconds, overcoming a significant bottleneck in LIB recycling technology.
“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” said Sohini Bhattacharyya, one of the two lead authors on the study and a Rice Academy Postdoctoral Fellow in the Nanomaterials Laboratory run by Ajayan. “It’s therefore really important to recycle spent LIBs to recover these metals.”
Conventional recycling methods often involve harsh acids, while alternative eco-friendly solvents like deep eutectic solvents (DESs) have struggled with efficiency and economic viability. Moreover, current recycling methods recover less than 5% of lithium, largely due to contamination and loss during the process as well as the energy intensive nature of recovery.
“The recovery rate is so low because lithium is usually precipitated last after all other metals, so our goal was to figure out how we can target lithium specifically,” said Salma Alhashim, a Rice doctoral alumna who is the study’s other lead author. “Here we used a DES that is a mixture of choline chloride and ethylene glycol, knowing from our previous work that during leaching in this DES, lithium gets surrounded by chloride ions from the choline chloride and is leached out into solution.”
In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process. Knowing that of the two substances only choline chloride is good at absorbing microwaves, the researchers submerged the battery waste material in the solvent and blasted it with microwave radiation.
“This allowed us to leach lithium selectively over other metals,” Bhattacharyya said. “Using microwave radiation for this process is akin to how a kitchen microwave heats food quickly. The energy is transferred directly to the molecules, making the reaction occur much faster than conventional heating methods.”
Compared to conventional heating methods like an oil bath, microwave-assisted heating can achieve similar efficiencies almost 100 times faster. For example, using the microwave-based process, the team found that it took 15 minutes to leach 87% of the lithium as opposed to the 12 hours needed to obtain the same recovery rate via oil bath heating.
“This also shows that selectivity towards specific elements can be achieved simply by tuning the DES composition,” Alhashim said. “Another advantage is solvent stability: Because the oil bath method takes so much longer, the solvent begins to decompose, whereas this does not happen with the short heating cycles of a microwave.”
This breakthrough method could dramatically improve the economics and environmental impact of LIB recycling, providing a sustainable solution to a growing global issue.
“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” said Ajayan, the corresponding author on the study and Rice’s Benjamin M. and Mary Greenwood Anderson Professor of Engineering and professor and department chair of materials science and nanoengineering.
https://news.rice.edu/news/2024/rice-la ... tery-waste
Re: Notas de energías renovables
La 'superbatería' belga combina la mejor tecnología de dos mundos
Andre Oerlemans, Change Inc, 06-Dic-2024
La empresa belga For-E ha desarrollado un supercondensador híbrido que combina tecnología de batería y supercondensador. Esto crea un nuevo tipo de batería que puede almacenar y devolver grandes cantidades de energía verde de manera sostenible y segura. “Pero oficialmente no es una batería”.

La empresa For-E suministra sistemas de almacenamiento de energía en forma de baterías domésticas y en grandes contenedores. Crédito: FoR-E
La empresa suministra sus baterías en seis países europeos, incluidos Alemania y Bélgica. Como baterías domésticas para residencias, pero también como contenedores almacenamiento a escala industrial para empresas. “Varios competidores están investigando la misma tecnología de supercondensadores, pero aún no tienen un sistema en funcionamiento. “Somos los únicos en este sentido”, afirman el ingeniero jefe Eli De Mul y el desarrollador comercial Frédéric Haven de For-E.
Baterías indispensables
Las baterías son indispensables para pasar de combustibles fósiles a energía verde. Pueden almacenar excedentes de electricidad para superar los períodos oscuros y sin viento, conocidos como débil y oscuro (“dunkelflaute”). Además, pueden reducir el desbalance en la red eléctrica al absorber los picos y valles en la producción de energía verde. Actualmente, el 99,9 por ciento de todas las baterías en uso son baterías de iones de litio, según el primer Informe de tendencias de almacenamiento inteligente (“Smart Storage Trendrepport”). Pero ese tipo de baterías presenta riesgos de incendio, la extracción de litio contamina el medio ambiente y los componentes de las baterías y materiales críticos como el cobalto, el manganeso, el litio o el cobre suelen proceder de países donde los derechos humanos y la conservación de la naturaleza son una baja prioridad. Además, estas baterías tienen una vida útil relativamente corta.
Supercondensadores
Por eso las empresas están buscando alternativas de almacenamiento de energía. Se están desarrollando baterías de sal, baterías de flujo y baterías de estado sólido como alternativas a las baterías de iones de litio. Esta búsqueda incluye el supercondensador, que tiene muchas ventajas sobre las baterías: puede almacenar mucha energía durante largos períodos de tiempo, se fabrica con materiales relativamente simples, inofensivos y fáciles de encontrar, y puede cargarse y descargarse con suma rapidez. En la práctica se usa en aplicaciones que requieren mucha energía rápidamente, por ejemplo, en minería, donde las grúas tienen que levantar pesadas cargas o los camiones grandes en pendientes pronunciadas.
Tensión inconstante
La rápida carga y descarga también es desventajosa para usos en la transición energética. Esto no sucede en una batería, que tiene un voltaje constante y estable. Por eso, los supercondensadores aún no son adecuados para almacenar energía verde solar o eólica, porque los inversores requeridos se apagarían inmediatamente debido a las fluctuaciones de tensión. Esto también los vuelve inadecuados para estabilizar el voltaje en la red eléctrica.
Técnicas combinadas
Hasta hace poco, claro. La empresa belga For-E ha encontrado una solución a este inconveniente y lanza al mercado un supercondensador híbrido en el que se emplea algunas técnicas de las baterías. “Hemos combinado las ventajas de ambas tecnologías. Nuestro primer desafío fue mantener la tensión estable. “De lo contrario, los inversores se apagan y no se pueden utilizar como batería”, explica De Mul, cofundador de For-E.
Video: funcionamiento de la batería For-E:
Litio en el ánodo
For-E resolvió el problema adaptando el supercondensador. Simplemente, consta de dos electrodos (placas) con una carga positiva y negativa entre ellos. Funciona según un proceso electrostático, sin generación de calor, y no según un proceso químico. Para ello, la empresa utiliza células de grafeno, un material que puede almacenar más energía. En el ánodo de la célula de grafeno se aplica entre un 10 y un 12 por ciento de litio, no para reaccionar con otros metales, como en una batería, sino solamente para estabilizar el voltaje. Esto crea una celda de supercondensador híbrido. Para esta celda adaptada, la empresa ha desarrollado especialmente un sistema de gestión de batería híbrido (BMS), de nuevo una combinación de sistemas de batería y supercondensadores. Los resultados de las pruebas muestran que después de 32.000 ciclos de carga a plena carga y alta velocidad, la batería híbrida todavía tiene el 80 por ciento de su capacidad restante. Por lo tanto, dura mucho más que los 5.000 a 8.000 ciclos de carga de las baterías tradicionales.
Proyecto piloto en Dinamarca
El voltaje ahora es estable. Esto hace que el supercondensador híbrido sea adecuado para almacenar grandes cantidades de energía verde y comercializarlas en el mercado no balanceado. Próximamente se iniciará un proyecto piloto en Dinamarca en un parque solar, donde For-E colocará dos contenedores de veinte pies con una capacidad de 5 megavatios hora, que almacenan el exceso de energía solar y lo suministran en las horas pico, ofreciendo un sistema de almacenamiento de energía durante los valles y picos en el suministro.
Sistema modular
El sistema es modular, lo que permite fabricar la 'superbatería' del tamaño deseado. La capacidad puede variar de 6 a 60 kilovatios hora, de 30 a 250 kilovatios hora y de 100 a 500 kilovatios hora. For-E puede ajustar el BMS para cargar y descargar a velocidades hasta veinte veces más rápidas que las baterías de litio. Esto permite que una batería más pequeña de 100 kilovatios-hora suministre tanta potencia como una batería de iones de litio de 1 megavatio-hora. El sistema también se suministra en contenedores con una capacidad de 1 megavatio hora. “Podemos almacenar 2,6 megavatios hora en un contenedor”, dice De Mul.

Los contenedores pueden contener 2,6 megavatios de capacidad de batería | Crédito: FoR-E
Todavía no en Holanda
For-E ya ha entregado cientos de baterías domésticas con esta tecnología, principalmente en Alemania y Bélgica. En la sucursal belga de Procter & Gamble se utiliza un sistema híbrido industrial como suministro de energía de reserva para los servidores. La empresa desarrolló un modelo móvil para la OTAN que puede utilizarse en zonas de crisis. “Las baterías no deben suponer ningún peligro de incendio o explosión allí”, afirma Haven. La empresa aún no ha instalado ningún sistema en los Países Bajos.
Doble seguridad contra incendios
La batería híbrida no contiene sustancias nocivas ni metales preciosos. Otra ventaja sobre las baterías de iones de litio es que no hay peligro de que el supercondensador híbrido se incendie. “Nuestra seguridad contra incendios es doble”, explica Haven. “No hay peligro de combustión espontánea, como ocurre con el litio. Con nosotros esto no es posible porque no hay desarrollo de calor. El grafeno que utilizamos también tiene la propiedad de extraer oxígeno en caso de incendio. Así que, incluso si hay un incendio cerca, se extinguirá solo”.
No es una batería
Dado que el sistema no convierte energía química en electricidad, no entra en la definición de batería según las autoridades belgas. Por ello, los instaladores y clientes de instalaciones For-E no tienen que pagar ninguna contribución de procesamiento al Bebat belga, que recoge y recicla las baterías. Esto supone un ahorro de decenas de miles de euros por contenedor. “Oficialmente no es una batería. Bebat no lo ve como una célula de batería, sino como una célula electrónica”, afirma Haven.
https://www.change.inc/energie/belgisch ... lden-41387
Andre Oerlemans, Change Inc, 06-Dic-2024
La empresa belga For-E ha desarrollado un supercondensador híbrido que combina tecnología de batería y supercondensador. Esto crea un nuevo tipo de batería que puede almacenar y devolver grandes cantidades de energía verde de manera sostenible y segura. “Pero oficialmente no es una batería”.

La empresa For-E suministra sistemas de almacenamiento de energía en forma de baterías domésticas y en grandes contenedores. Crédito: FoR-E
La empresa suministra sus baterías en seis países europeos, incluidos Alemania y Bélgica. Como baterías domésticas para residencias, pero también como contenedores almacenamiento a escala industrial para empresas. “Varios competidores están investigando la misma tecnología de supercondensadores, pero aún no tienen un sistema en funcionamiento. “Somos los únicos en este sentido”, afirman el ingeniero jefe Eli De Mul y el desarrollador comercial Frédéric Haven de For-E.
Baterías indispensables
Las baterías son indispensables para pasar de combustibles fósiles a energía verde. Pueden almacenar excedentes de electricidad para superar los períodos oscuros y sin viento, conocidos como débil y oscuro (“dunkelflaute”). Además, pueden reducir el desbalance en la red eléctrica al absorber los picos y valles en la producción de energía verde. Actualmente, el 99,9 por ciento de todas las baterías en uso son baterías de iones de litio, según el primer Informe de tendencias de almacenamiento inteligente (“Smart Storage Trendrepport”). Pero ese tipo de baterías presenta riesgos de incendio, la extracción de litio contamina el medio ambiente y los componentes de las baterías y materiales críticos como el cobalto, el manganeso, el litio o el cobre suelen proceder de países donde los derechos humanos y la conservación de la naturaleza son una baja prioridad. Además, estas baterías tienen una vida útil relativamente corta.
Supercondensadores
Por eso las empresas están buscando alternativas de almacenamiento de energía. Se están desarrollando baterías de sal, baterías de flujo y baterías de estado sólido como alternativas a las baterías de iones de litio. Esta búsqueda incluye el supercondensador, que tiene muchas ventajas sobre las baterías: puede almacenar mucha energía durante largos períodos de tiempo, se fabrica con materiales relativamente simples, inofensivos y fáciles de encontrar, y puede cargarse y descargarse con suma rapidez. En la práctica se usa en aplicaciones que requieren mucha energía rápidamente, por ejemplo, en minería, donde las grúas tienen que levantar pesadas cargas o los camiones grandes en pendientes pronunciadas.
Tensión inconstante
La rápida carga y descarga también es desventajosa para usos en la transición energética. Esto no sucede en una batería, que tiene un voltaje constante y estable. Por eso, los supercondensadores aún no son adecuados para almacenar energía verde solar o eólica, porque los inversores requeridos se apagarían inmediatamente debido a las fluctuaciones de tensión. Esto también los vuelve inadecuados para estabilizar el voltaje en la red eléctrica.
Técnicas combinadas
Hasta hace poco, claro. La empresa belga For-E ha encontrado una solución a este inconveniente y lanza al mercado un supercondensador híbrido en el que se emplea algunas técnicas de las baterías. “Hemos combinado las ventajas de ambas tecnologías. Nuestro primer desafío fue mantener la tensión estable. “De lo contrario, los inversores se apagan y no se pueden utilizar como batería”, explica De Mul, cofundador de For-E.
Video: funcionamiento de la batería For-E:
Litio en el ánodo
For-E resolvió el problema adaptando el supercondensador. Simplemente, consta de dos electrodos (placas) con una carga positiva y negativa entre ellos. Funciona según un proceso electrostático, sin generación de calor, y no según un proceso químico. Para ello, la empresa utiliza células de grafeno, un material que puede almacenar más energía. En el ánodo de la célula de grafeno se aplica entre un 10 y un 12 por ciento de litio, no para reaccionar con otros metales, como en una batería, sino solamente para estabilizar el voltaje. Esto crea una celda de supercondensador híbrido. Para esta celda adaptada, la empresa ha desarrollado especialmente un sistema de gestión de batería híbrido (BMS), de nuevo una combinación de sistemas de batería y supercondensadores. Los resultados de las pruebas muestran que después de 32.000 ciclos de carga a plena carga y alta velocidad, la batería híbrida todavía tiene el 80 por ciento de su capacidad restante. Por lo tanto, dura mucho más que los 5.000 a 8.000 ciclos de carga de las baterías tradicionales.
Proyecto piloto en Dinamarca
El voltaje ahora es estable. Esto hace que el supercondensador híbrido sea adecuado para almacenar grandes cantidades de energía verde y comercializarlas en el mercado no balanceado. Próximamente se iniciará un proyecto piloto en Dinamarca en un parque solar, donde For-E colocará dos contenedores de veinte pies con una capacidad de 5 megavatios hora, que almacenan el exceso de energía solar y lo suministran en las horas pico, ofreciendo un sistema de almacenamiento de energía durante los valles y picos en el suministro.
Sistema modular
El sistema es modular, lo que permite fabricar la 'superbatería' del tamaño deseado. La capacidad puede variar de 6 a 60 kilovatios hora, de 30 a 250 kilovatios hora y de 100 a 500 kilovatios hora. For-E puede ajustar el BMS para cargar y descargar a velocidades hasta veinte veces más rápidas que las baterías de litio. Esto permite que una batería más pequeña de 100 kilovatios-hora suministre tanta potencia como una batería de iones de litio de 1 megavatio-hora. El sistema también se suministra en contenedores con una capacidad de 1 megavatio hora. “Podemos almacenar 2,6 megavatios hora en un contenedor”, dice De Mul.

Los contenedores pueden contener 2,6 megavatios de capacidad de batería | Crédito: FoR-E
Todavía no en Holanda
For-E ya ha entregado cientos de baterías domésticas con esta tecnología, principalmente en Alemania y Bélgica. En la sucursal belga de Procter & Gamble se utiliza un sistema híbrido industrial como suministro de energía de reserva para los servidores. La empresa desarrolló un modelo móvil para la OTAN que puede utilizarse en zonas de crisis. “Las baterías no deben suponer ningún peligro de incendio o explosión allí”, afirma Haven. La empresa aún no ha instalado ningún sistema en los Países Bajos.
Doble seguridad contra incendios
La batería híbrida no contiene sustancias nocivas ni metales preciosos. Otra ventaja sobre las baterías de iones de litio es que no hay peligro de que el supercondensador híbrido se incendie. “Nuestra seguridad contra incendios es doble”, explica Haven. “No hay peligro de combustión espontánea, como ocurre con el litio. Con nosotros esto no es posible porque no hay desarrollo de calor. El grafeno que utilizamos también tiene la propiedad de extraer oxígeno en caso de incendio. Así que, incluso si hay un incendio cerca, se extinguirá solo”.
No es una batería
Dado que el sistema no convierte energía química en electricidad, no entra en la definición de batería según las autoridades belgas. Por ello, los instaladores y clientes de instalaciones For-E no tienen que pagar ninguna contribución de procesamiento al Bebat belga, que recoge y recicla las baterías. Esto supone un ahorro de decenas de miles de euros por contenedor. “Oficialmente no es una batería. Bebat no lo ve como una célula de batería, sino como una célula electrónica”, afirma Haven.
https://www.change.inc/energie/belgisch ... lden-41387
Re: Notas de energías renovables
No usa metales escasos, sino plástico: el primer electrolizador con pilas de plástico se puede ver en Kootwijkerbroek
Teun Schröder, 10-Dic-2024
El lunes pasado, Sophie Hermans, Ministra de Clima y Crecimiento Verde, inauguró el Centro de Experiencia H2 en Kootwijkerbroek. En el centro se presentará un electrolizador especial del fabricante holandés XINTC. Esta empresa desarrolló un módulo de hidrógeno enteramente de plástico, sin metales, membranas ni sellos especiales.

El electrolizador XINTC está construido con pilas de plástico modulares. | Crédito: XINTC
La producción de hidrógeno mediante electrólisis sigue siendo cara, en parte a que estos sistemas contienen metales raros y caros, como iridio y platino. Por ello, la empresa XINTC ha desarrollado un electrolizador que no depende de estas materias primas. Esta empresa afirma haber desarrollado el primer módulo de hidrógeno (también llamado pila), que consta enteramente de piezas de plástico. La pila de un electrolizador es el componente principal donde el agua se separa en hidrógeno y oxígeno mediante electricidad (sostenible).
Hidrógeno en el parque solar
XINTC trabajó en esta innovación durante más de diez años. La empresa recibió ayuda de GroenvermogenNL, un programa de transición del Fondo de Crecimiento Nacional que gestiona un presupuesto de 838 millones de euros. Las dos organizaciones han trabajado juntas para garantizar que el sistema electrolizador esté conectado a un parque solar de Energeion en Kootwijkerbroek. El electrolizador está alojado en el H2 Experience Center, donde los interesados pueden ver la tecnología en operación. El centro fue inaugurado el lunes por la Ministra Hermans y el alcalde de Barneveld, Jacco van der Tak.
Posibilidades de producción en masa
“Se trata de un desarrollo fantástico e innovador y de un diseño de electrolizador holandés único con el que damos un paso importante hacia la economía del hidrógeno verde”, afirma Annemarie Manger, miembro del consejo de administración de GroenvermogenNL. “Normalmente, los electrolizadores se fabrican según las especificaciones del cliente, utilizando componentes caros, lo que encarece la producción de hidrógeno. “Las pilas totalmente de plástico, la posibilidad de producción en masa y el hecho de que las pilas prácticamente no requieren mantenimiento implican que los costes son significativamente más bajos”.
Hidrógeno para la movilidad
Gracias a la electrónica inteligente, el electrolizador controla de cerca el rendimiento del parque solar. El sistema luego produce hidrógeno cuando el parque solar suministra energía excesiva a la red. Según Manger, este método puede incrementar en una cuarta parte el rendimiento energético de un campo solar.
La cantidad limitada de hidrógeno que se produce actualmente en el H2 Experience Center se utilizará para hacer que la movilidad sea más sostenible. En última instancia, la ambición es aumentar la capacidad a 2,4 megavatios.
https://www.change.inc/energie/geen-sch ... roek-41394
Teun Schröder, 10-Dic-2024
El lunes pasado, Sophie Hermans, Ministra de Clima y Crecimiento Verde, inauguró el Centro de Experiencia H2 en Kootwijkerbroek. En el centro se presentará un electrolizador especial del fabricante holandés XINTC. Esta empresa desarrolló un módulo de hidrógeno enteramente de plástico, sin metales, membranas ni sellos especiales.

El electrolizador XINTC está construido con pilas de plástico modulares. | Crédito: XINTC
La producción de hidrógeno mediante electrólisis sigue siendo cara, en parte a que estos sistemas contienen metales raros y caros, como iridio y platino. Por ello, la empresa XINTC ha desarrollado un electrolizador que no depende de estas materias primas. Esta empresa afirma haber desarrollado el primer módulo de hidrógeno (también llamado pila), que consta enteramente de piezas de plástico. La pila de un electrolizador es el componente principal donde el agua se separa en hidrógeno y oxígeno mediante electricidad (sostenible).
Hidrógeno en el parque solar
XINTC trabajó en esta innovación durante más de diez años. La empresa recibió ayuda de GroenvermogenNL, un programa de transición del Fondo de Crecimiento Nacional que gestiona un presupuesto de 838 millones de euros. Las dos organizaciones han trabajado juntas para garantizar que el sistema electrolizador esté conectado a un parque solar de Energeion en Kootwijkerbroek. El electrolizador está alojado en el H2 Experience Center, donde los interesados pueden ver la tecnología en operación. El centro fue inaugurado el lunes por la Ministra Hermans y el alcalde de Barneveld, Jacco van der Tak.
Posibilidades de producción en masa
“Se trata de un desarrollo fantástico e innovador y de un diseño de electrolizador holandés único con el que damos un paso importante hacia la economía del hidrógeno verde”, afirma Annemarie Manger, miembro del consejo de administración de GroenvermogenNL. “Normalmente, los electrolizadores se fabrican según las especificaciones del cliente, utilizando componentes caros, lo que encarece la producción de hidrógeno. “Las pilas totalmente de plástico, la posibilidad de producción en masa y el hecho de que las pilas prácticamente no requieren mantenimiento implican que los costes son significativamente más bajos”.
Hidrógeno para la movilidad
Gracias a la electrónica inteligente, el electrolizador controla de cerca el rendimiento del parque solar. El sistema luego produce hidrógeno cuando el parque solar suministra energía excesiva a la red. Según Manger, este método puede incrementar en una cuarta parte el rendimiento energético de un campo solar.
La cantidad limitada de hidrógeno que se produce actualmente en el H2 Experience Center se utilizará para hacer que la movilidad sea más sostenible. En última instancia, la ambición es aumentar la capacidad a 2,4 megavatios.
https://www.change.inc/energie/geen-sch ... roek-41394
Re: Notas de energías renovables
Recycling lithium-ion batteries delivers significant environmental benefits
Standford Report, January 31st, 2025
According to new research, greenhouse gas emissions, energy consumption, and water usage are all meaningfully reduced when – instead of mining for new metals – batteries are recycled.
Compared with mining and processing new chemicals, the battery recycling process analyzed in the study:
Lithium-ion battery recyclers source materials from two main streams: defective scrap material from battery manufacturers, and so-called “dead” batteries, mostly collected from workplaces. The recycling process extracts lithium, nickel, cobalt, copper, manganese, and aluminum from these sources.
The study quantified the environmental footprint of this recycling process, and found it emits less than half the greenhouse gases (GHGs) of conventional mining and refinement of these metals and uses about one-fourth of the water and energy of mining new metals. The environmental benefits are even greater for the scrap stream, which comprised about 90% of the recycled supply studied, coming in at: 19% of the GHG emissions of mining and processing, 12% of the water use, and 11% of the energy use. While it was not specifically measured, reduced energy use also correlates with less air pollutants like soot and sulfur.
“Recently, I was in an Uber electric vehicle. The driver asked me if EVs really are ‘good’ for the environment because he recently had read that maybe they aren’t. All he knew was that I was faculty at Stanford,” William Tarpeh, assistant professor of chemical engineering in the School of Engineering and the study’s senior author, recalled with a chuckle.
“I told him that EVs definitely are good for the environment, and we’re now finding new ways to make them even more so,” said Tarpeh. “This study, I think, tells us that we can design the future of battery recycling to optimize the environmental benefits. We can write the script.”
Location, location
Battery recycling’s environmental impacts depend heavily on the processing facility’s location and electricity source.
“A battery recycling plant in regions that rely heavily on electricity generated by burning coal would see a diminished climate advantage,” said Samantha Bunke, a PhD student at Stanford and one of the study’s three lead investigators.
“On the other hand, fresh-water shortages in regions with cleaner electricity are a great concern,” added Bunke.
Most of the study’s data for battery recycling came from Redwood Materials in Nevada – North America’s largest industrial-scale lithium-ion battery recycling facility – which benefits from the western U.S.’s cleaner energy mix, which includes hydropower, geothermal, and solar.
Transportation is also a crucial factor. In the mining and processing of cobalt, for example, 80% of the global supply is mined in the Democratic Republic of the Congo. Then, 75% of the cobalt supply for batteries travels by road, rail, and sea to China for refining. Meanwhile, most of the global supply of lithium is mined in Australia and Chile. Most of that supply also makes its way to China. The equivalent process for battery recycling is collecting used batteries and scrap, which must then be transported to the recycler.
“We determined that the total transport distance for conventional mining and refining of just the active metals in a battery averages about 35,000 miles (57,000 kilometers). That’s like going around the world one and a half times,” said Michael Machala, PhD ’17, also a lead author of the study.
“Our estimated total transport of used batteries from your cell phone or an EV to a hypothetical refinement facility in California was around 140 miles (225 kilometers),” added Machala, who was a postdoctoral scholar at Stanford’s Precourt Institute for Energy at the time of research and is now a staff scientist for the Toyota Research Institute. This distance was based on presumed optimal locations for future refining facilities amid ample U.S. recyclable batteries.
Redwood’s environmental outcomes do not represent the nascent battery recycling industry’s overall environmental performance for recycling used batteries. Conventional pyrometallurgy, a key refining step, is very energy intensive, usually requiring temperatures of more than 2,550 degrees Fahrenheit (1,400 degrees Celsius).
Redwood, however, has patented a process called “reductive calcination,” which requires considerably lower temperatures, does not use fossil fuels, and yields more lithium than conventional methods.
“Other pyrometallurgical processes similar to Redwood’s are emerging in labs that also operate at moderate temperatures and don’t burn fossil fuels,” said the third lead author, Xi Chen, a postdoctoral scholar at Stanford during the time of research and now an assistant professor at City University of Hong Kong.
“Every time we spoke about our research, companies would ask us questions and incorporate what we were finding into more efficient practices,” added Chen. “This study can inform the scale-up of battery recycling companies, like the importance of picking good locations for new facilities. California doesn’t have a monopoly on aging lithium-ion batteries from cell phones and EVs.”
Looking ahead
Industrial-scale battery recycling is growing, but not quickly enough, according to senior author Tarpeh.
“We’re forecast to run out of new cobalt, nickel, and lithium in the next decade. We’ll probably just mine lower-grade minerals for a while, but 2050 and the goals we have for that year are not far away,” he said.
While the U.S. now recycles about 50% of available lithium-ion batteries, it has successfully recycled 99% of lead-acid batteries for decades. Given that used lithium-ion batteries contain materials with up to 10 times higher economic value, the opportunity is significant, Tarpeh said.
“For a future with a greatly increased supply of used batteries, we need to design and prepare a recycling system today from collection to processing back into new batteries with minimal environmental impact,” he added. “Hopefully, battery manufacturers will consider recyclability more in their future designs, too.”
https://news.stanford.edu/stories/2025/ ... pply-chain
Standford Report, January 31st, 2025
According to new research, greenhouse gas emissions, energy consumption, and water usage are all meaningfully reduced when – instead of mining for new metals – batteries are recycled.
Compared with mining and processing new chemicals, the battery recycling process analyzed in the study:
- Emitted 58% to 81% less greenhouse gas emissions
- Used 72% to 88% less water
- And used 77% to 89% less energy
- Carbon emissions aside, energy use correlates with air pollutants like soot and sulfur
Lithium-ion battery recyclers source materials from two main streams: defective scrap material from battery manufacturers, and so-called “dead” batteries, mostly collected from workplaces. The recycling process extracts lithium, nickel, cobalt, copper, manganese, and aluminum from these sources.
The study quantified the environmental footprint of this recycling process, and found it emits less than half the greenhouse gases (GHGs) of conventional mining and refinement of these metals and uses about one-fourth of the water and energy of mining new metals. The environmental benefits are even greater for the scrap stream, which comprised about 90% of the recycled supply studied, coming in at: 19% of the GHG emissions of mining and processing, 12% of the water use, and 11% of the energy use. While it was not specifically measured, reduced energy use also correlates with less air pollutants like soot and sulfur.
“Recently, I was in an Uber electric vehicle. The driver asked me if EVs really are ‘good’ for the environment because he recently had read that maybe they aren’t. All he knew was that I was faculty at Stanford,” William Tarpeh, assistant professor of chemical engineering in the School of Engineering and the study’s senior author, recalled with a chuckle.
“I told him that EVs definitely are good for the environment, and we’re now finding new ways to make them even more so,” said Tarpeh. “This study, I think, tells us that we can design the future of battery recycling to optimize the environmental benefits. We can write the script.”
Location, location
Battery recycling’s environmental impacts depend heavily on the processing facility’s location and electricity source.
“A battery recycling plant in regions that rely heavily on electricity generated by burning coal would see a diminished climate advantage,” said Samantha Bunke, a PhD student at Stanford and one of the study’s three lead investigators.
“On the other hand, fresh-water shortages in regions with cleaner electricity are a great concern,” added Bunke.
Most of the study’s data for battery recycling came from Redwood Materials in Nevada – North America’s largest industrial-scale lithium-ion battery recycling facility – which benefits from the western U.S.’s cleaner energy mix, which includes hydropower, geothermal, and solar.
Transportation is also a crucial factor. In the mining and processing of cobalt, for example, 80% of the global supply is mined in the Democratic Republic of the Congo. Then, 75% of the cobalt supply for batteries travels by road, rail, and sea to China for refining. Meanwhile, most of the global supply of lithium is mined in Australia and Chile. Most of that supply also makes its way to China. The equivalent process for battery recycling is collecting used batteries and scrap, which must then be transported to the recycler.
“We determined that the total transport distance for conventional mining and refining of just the active metals in a battery averages about 35,000 miles (57,000 kilometers). That’s like going around the world one and a half times,” said Michael Machala, PhD ’17, also a lead author of the study.
“Our estimated total transport of used batteries from your cell phone or an EV to a hypothetical refinement facility in California was around 140 miles (225 kilometers),” added Machala, who was a postdoctoral scholar at Stanford’s Precourt Institute for Energy at the time of research and is now a staff scientist for the Toyota Research Institute. This distance was based on presumed optimal locations for future refining facilities amid ample U.S. recyclable batteries.
Patent advantageAcademia/industry cooperation
This study is the first known lifecycle analysis of lithium-ion battery recycling based on data from an industrial-scale recycling facility.
“We are grateful for the data supplied by Redwood Materials from the largest industrial-scale lithium-ion battery recycling facility in North America, which was needed for this research,” said senior author William Tarpeh.
Redwood, which has since broken ground on a new facility in South Carolina, was one of the first to apply the lessons of this project to their own operations and environmental footprint.
Said company founder and chief executive, JB Straubel: “The insights of this research have played a key role in refining Redwood’s battery recycling processes.” Straubel earned his undergraduate and graduate degrees from Stanford.
“Thanks to the researchers’ observations,” said Straubel, “we have further reduced our environmental footprint, while also advancing both resource efficiency and process scalability.”
Redwood’s environmental outcomes do not represent the nascent battery recycling industry’s overall environmental performance for recycling used batteries. Conventional pyrometallurgy, a key refining step, is very energy intensive, usually requiring temperatures of more than 2,550 degrees Fahrenheit (1,400 degrees Celsius).
Redwood, however, has patented a process called “reductive calcination,” which requires considerably lower temperatures, does not use fossil fuels, and yields more lithium than conventional methods.
“Other pyrometallurgical processes similar to Redwood’s are emerging in labs that also operate at moderate temperatures and don’t burn fossil fuels,” said the third lead author, Xi Chen, a postdoctoral scholar at Stanford during the time of research and now an assistant professor at City University of Hong Kong.
“Every time we spoke about our research, companies would ask us questions and incorporate what we were finding into more efficient practices,” added Chen. “This study can inform the scale-up of battery recycling companies, like the importance of picking good locations for new facilities. California doesn’t have a monopoly on aging lithium-ion batteries from cell phones and EVs.”
Looking ahead
Industrial-scale battery recycling is growing, but not quickly enough, according to senior author Tarpeh.
“We’re forecast to run out of new cobalt, nickel, and lithium in the next decade. We’ll probably just mine lower-grade minerals for a while, but 2050 and the goals we have for that year are not far away,” he said.
While the U.S. now recycles about 50% of available lithium-ion batteries, it has successfully recycled 99% of lead-acid batteries for decades. Given that used lithium-ion batteries contain materials with up to 10 times higher economic value, the opportunity is significant, Tarpeh said.
“For a future with a greatly increased supply of used batteries, we need to design and prepare a recycling system today from collection to processing back into new batteries with minimal environmental impact,” he added. “Hopefully, battery manufacturers will consider recyclability more in their future designs, too.”
https://news.stanford.edu/stories/2025/ ... pply-chain
Re: Notas de energías renovables
Tiny copper 'flowers' bloom on artificial leaves for clean fuel production
Date: February 3, 2025
Source: University of Cambridge
Summary:
Tiny copper 'nano-flowers' have been attached to an artificial leaf to produce clean fuels and chemicals that are the backbone of modern energy and manufacturing.
Tiny copper 'nano-flowers' have been attached to an artificial leaf to produce clean fuels and chemicals that are the backbone of modern energy and manufacturing.
The researchers, from the University of Cambridge and the University of California, Berkeley, developed a practical way to make hydrocarbons -- molecules made of carbon and hydrogen -- powered solely by the sun.
The device they developed combines a light absorbing 'leaf' made from a high-efficiency solar cell material called perovskite, with a copper nanoflower catalyst, to convert carbon dioxide into useful molecules. Unlike most metal catalysts, which can only convert CO₂ into single-carbon molecules, the copper flowers enable the formation of more complex hydrocarbons with two carbon atoms, such as ethane and ethylene -- key building blocks for liquid fuels, chemicals and plastics.
Almost all hydrocarbons currently stem from fossil fuels, but the method developed by the Cambridge-Berkeley team results in clean chemicals and fuels made from CO2, water and glycerol -- a common organic compound -- without any additional carbon emissions. The results are reported in the journal Nature Catalysis.
The study builds on the team's earlier work on artificial leaves, which take their inspiration from photosynthesis: the process by which plants convert sunlight into food. "We wanted to go beyond basic carbon dioxide reduction and produce more complex hydrocarbons, but that requires significantly more energy," said Dr Virgil Andrei from Cambridge's Yusuf Hamied Department of Chemistry, the study's lead author.
Andrei, a Research Fellow of St John's College, Cambridge, carried out the work as part of the Winton Cambridge-Kavli ENSI Exchange programme in the lab of Professor Peidong Yang at University of California, Berkeley.
By coupling a perovskite light absorber with the copper nanoflower catalyst, the team was able to produce more complex hydrocarbons. To further improve efficiency and overcome the energy limits of splitting water, the team added silicon nanowire electrodes that can oxidise glycerol instead. This new platform produces hydrocarbons much more effectively -- 200 times better than earlier systems for splitting water and carbon dioxide.
The reaction not only boosts CO₂ reduction performance, but also produces high-value chemicals such as glycerate, lactate, and formate, which have applications in pharmaceuticals, cosmetics, and chemical synthesis.
"Glycerol is typically considered waste, but here it plays a crucial role in improving the reaction rate," said Andrei. "This demonstrates we can apply our platform to a wide range of chemical processes beyond just waste conversion. By carefully designing the catalyst's surface area, we can influence what products we generate, making the process more selective."
While current CO₂-to-hydrocarbon selectivity remains around 10%, the researchers are optimistic about improving catalyst design to increase efficiency. The team envisions applying their platform to even more complex organic reactions, opening doors for innovation in sustainable chemical production. With continued improvements, this research could accelerate the transition to a circular, carbon-neutral economy.
"This project is an excellent example of how global research partnerships can lead to impactful scientific advancements," said Andrei. "By combining expertise from Cambridge and Berkeley, we've developed a system that may reshape the way we produce fuels and valuable chemicals sustainably."
The research was supported in part by the Winton Programme for the Physics of Sustainability, St John's College, the US Department of Energy, the European Research Council, and UK Research and Innovation (UKRI).
https://www.sciencedaily.com/releases/2 ... 142505.htm
Artículo técnico (acceso abierto): https://www.nature.com/articles/s41929-025-01292-y
Date: February 3, 2025
Source: University of Cambridge
Summary:
Tiny copper 'nano-flowers' have been attached to an artificial leaf to produce clean fuels and chemicals that are the backbone of modern energy and manufacturing.
Tiny copper 'nano-flowers' have been attached to an artificial leaf to produce clean fuels and chemicals that are the backbone of modern energy and manufacturing.
The researchers, from the University of Cambridge and the University of California, Berkeley, developed a practical way to make hydrocarbons -- molecules made of carbon and hydrogen -- powered solely by the sun.
The device they developed combines a light absorbing 'leaf' made from a high-efficiency solar cell material called perovskite, with a copper nanoflower catalyst, to convert carbon dioxide into useful molecules. Unlike most metal catalysts, which can only convert CO₂ into single-carbon molecules, the copper flowers enable the formation of more complex hydrocarbons with two carbon atoms, such as ethane and ethylene -- key building blocks for liquid fuels, chemicals and plastics.
Almost all hydrocarbons currently stem from fossil fuels, but the method developed by the Cambridge-Berkeley team results in clean chemicals and fuels made from CO2, water and glycerol -- a common organic compound -- without any additional carbon emissions. The results are reported in the journal Nature Catalysis.
The study builds on the team's earlier work on artificial leaves, which take their inspiration from photosynthesis: the process by which plants convert sunlight into food. "We wanted to go beyond basic carbon dioxide reduction and produce more complex hydrocarbons, but that requires significantly more energy," said Dr Virgil Andrei from Cambridge's Yusuf Hamied Department of Chemistry, the study's lead author.
Andrei, a Research Fellow of St John's College, Cambridge, carried out the work as part of the Winton Cambridge-Kavli ENSI Exchange programme in the lab of Professor Peidong Yang at University of California, Berkeley.
By coupling a perovskite light absorber with the copper nanoflower catalyst, the team was able to produce more complex hydrocarbons. To further improve efficiency and overcome the energy limits of splitting water, the team added silicon nanowire electrodes that can oxidise glycerol instead. This new platform produces hydrocarbons much more effectively -- 200 times better than earlier systems for splitting water and carbon dioxide.
The reaction not only boosts CO₂ reduction performance, but also produces high-value chemicals such as glycerate, lactate, and formate, which have applications in pharmaceuticals, cosmetics, and chemical synthesis.
"Glycerol is typically considered waste, but here it plays a crucial role in improving the reaction rate," said Andrei. "This demonstrates we can apply our platform to a wide range of chemical processes beyond just waste conversion. By carefully designing the catalyst's surface area, we can influence what products we generate, making the process more selective."
While current CO₂-to-hydrocarbon selectivity remains around 10%, the researchers are optimistic about improving catalyst design to increase efficiency. The team envisions applying their platform to even more complex organic reactions, opening doors for innovation in sustainable chemical production. With continued improvements, this research could accelerate the transition to a circular, carbon-neutral economy.
"This project is an excellent example of how global research partnerships can lead to impactful scientific advancements," said Andrei. "By combining expertise from Cambridge and Berkeley, we've developed a system that may reshape the way we produce fuels and valuable chemicals sustainably."
The research was supported in part by the Winton Programme for the Physics of Sustainability, St John's College, the US Department of Energy, the European Research Council, and UK Research and Innovation (UKRI).
https://www.sciencedaily.com/releases/2 ... 142505.htm
Artículo técnico (acceso abierto): https://www.nature.com/articles/s41929-025-01292-y
Re: Notas de energías renovables
Borrado (duplicado)
Última edición por Fermat el Vie Feb 07, 2025 9:47 am, editado 1 vez en total.
Re: Notas de energías renovables
Pioneering New Solutions to Recycle Solar Panels
Silje Grytli Tveten, 30. January 2025, Norwegianscitechnews.com

A lab full of sunshine: Martin Bellman of SINTEF has researched solar panels for years. Now he's coordinating the project that will allow us to recycle the materials they use. Photo: Thor Nielsen
Solar panels contain many valuable materials. Still, most of them end up discarded after use. Now researchers are investigating new ways of recycling.
Solar panels, vital to the renewable energy revolution, contain valuable materials such as silicon, aluminium, copper, silver, glass, and polymers. Yet, at the end of their lifespan—typically 25-30 years—most panels are discarded in landfills, wasting these critical resources. Researchers are now stepping up to address this growing environmental challenge.
Coordinated by SINTEF, an EU-funded research project called QUASAR aims to revolutionize the recycling of solar panels, ensuring that more materials can be recovered and reused in the solar cell industry and beyond. With a focus on advancing circularity, the project is developing cutting-edge technologies to recycle 70-90% of key materials, including silicon, metals, glass, and polymers, at high purity levels.
Recycling Beyond Aluminium and Glass
Currently, recycling efforts for solar panels mainly recover aluminium frames and glass, while other materials—such as silicon, silver, and polymers—are largely discarded.
“Today, only aluminium and glass are commonly recycled. Silicon, silver, and polymer fractions often end up as waste,” says Martin Bellmann, Senior Business Developer at SINTEF and coordinator of the QUASAR project. “Our goal is to change that by creating technologies that unlock access to these valuable materials.”
The encapsulated structure of solar panels and the evolving design of newer models present significant challenges for recycling. Panels differ in size, material composition, and properties, making it difficult to create a one-size-fits-all recycling solution. QUASAR addresses these issues with innovative approaches.
Digital Passports, AI, and Circular Solutions
The QUASAR project integrates advanced tools to achieve full circularity of solar panel materials. Key initiatives include:
The QUASAR project is funded under the European Union’s HORIZON – Sustainable, secure, and competitive energy supply program (grant agreement number 101122298). Launched in September 2023, the project will run until November 2027, bringing together experts and stakeholders to pave the way for a greener, more sustainable solar energy industry.
By implementing these innovative recycling solutions, the QUASAR team is contributing to a more sustainable and resource-efficient future, ensuring that the solar panels powering the renewable energy transition leave behind a smaller environmental footprint.
For more information about the QUASAR project, visit the official website: https://quasar-project.eu/.
Follow the project’s updates on LinkedIn: QUASAR LinkedIn Page.
https://www.sintef.no/en/latest-news/20 ... ar-panels/
Silje Grytli Tveten, 30. January 2025, Norwegianscitechnews.com

A lab full of sunshine: Martin Bellman of SINTEF has researched solar panels for years. Now he's coordinating the project that will allow us to recycle the materials they use. Photo: Thor Nielsen
Solar panels contain many valuable materials. Still, most of them end up discarded after use. Now researchers are investigating new ways of recycling.
Solar panels, vital to the renewable energy revolution, contain valuable materials such as silicon, aluminium, copper, silver, glass, and polymers. Yet, at the end of their lifespan—typically 25-30 years—most panels are discarded in landfills, wasting these critical resources. Researchers are now stepping up to address this growing environmental challenge.
Coordinated by SINTEF, an EU-funded research project called QUASAR aims to revolutionize the recycling of solar panels, ensuring that more materials can be recovered and reused in the solar cell industry and beyond. With a focus on advancing circularity, the project is developing cutting-edge technologies to recycle 70-90% of key materials, including silicon, metals, glass, and polymers, at high purity levels.
Recycling Beyond Aluminium and Glass
Currently, recycling efforts for solar panels mainly recover aluminium frames and glass, while other materials—such as silicon, silver, and polymers—are largely discarded.
“Today, only aluminium and glass are commonly recycled. Silicon, silver, and polymer fractions often end up as waste,” says Martin Bellmann, Senior Business Developer at SINTEF and coordinator of the QUASAR project. “Our goal is to change that by creating technologies that unlock access to these valuable materials.”
The encapsulated structure of solar panels and the evolving design of newer models present significant challenges for recycling. Panels differ in size, material composition, and properties, making it difficult to create a one-size-fits-all recycling solution. QUASAR addresses these issues with innovative approaches.
Digital Passports, AI, and Circular Solutions
The QUASAR project integrates advanced tools to achieve full circularity of solar panel materials. Key initiatives include:
- Innovative Recycling Technologies: Developing methods to efficiently separate and process materials from decommissioned panels.
- Digital Product Passports: Leveraging digital twin technology, these passports will track and manage solar panels throughout their lifecycle, providing key information on production, material composition, and condition.
- Artificial Intelligence: AI-driven solutions will assess the condition of used panels, determining whether they can be reused, repaired, or recycled. The combination of these technologies aims to optimize resource recovery, minimize waste, and improve cost efficiency for the solar industry.
The QUASAR project is funded under the European Union’s HORIZON – Sustainable, secure, and competitive energy supply program (grant agreement number 101122298). Launched in September 2023, the project will run until November 2027, bringing together experts and stakeholders to pave the way for a greener, more sustainable solar energy industry.
By implementing these innovative recycling solutions, the QUASAR team is contributing to a more sustainable and resource-efficient future, ensuring that the solar panels powering the renewable energy transition leave behind a smaller environmental footprint.
For more information about the QUASAR project, visit the official website: https://quasar-project.eu/.
Follow the project’s updates on LinkedIn: QUASAR LinkedIn Page.
https://www.sintef.no/en/latest-news/20 ... ar-panels/
Re: Notas de energías renovables
The Birmingham Blade: the world's first geographically tailored urban wind turbine designed by AI
28 November 2024University of Birmigham,

Birmingham Blade launch event - prototype and people
Dr Kit Windows Yule, University of Birmingham, and Chief Scientific Officer, EvoPhase; Leonard Nicusan, Chief Technology Officer, EvoPhase; Dominik Werner, CEO, EvoPhase; David Coleman, CEO, University of Birmingham Enterprise; Jack Sykes, Chief Operating Officer, EvoPhase; John Cook, Entrepreneur-in-Residence, University of Birmingham Enterprise; Laura Bond, Entrepreneur-in-Residence, University of Birmingham Enterprise; Paul Jarvis, Managing Director, Kwik Fab Ltd
AI design specialists EvoPhase and precision metal fabricators KwikFab have unveiled the world’s first urban wind turbine designed by AI, and tailored to the unique wind conditions of a specific geographic area. The team has called it the Birmingham Blade.
The collaboration between EvoPhase and KwikFab provides a solution to one of the most pressing issues in the green energy landscape – how to produce small-scale, affordable, generators of clean wind energy.
EvoPhase used its AI-driven design process to generate and test designs for their efficiency at wind speeds found in Birmingham, which, at 3.6 m/s are substantially lower than the 10 metres per second rating for most turbines.
“We needed a turbine that could capture Birmingham’s relatively low wind speeds while managing turbulence caused by surrounding buildings,” explained Leonard Nicusan, Chief Technology Officer of EvoPhase. “The design also had to be compact and lightweight to suit rooftop installations."
EvoPhase found the optimal design for curved blades which spin around a central point, and confirmed that that it will be up to seven times more efficient than existing designs used in the Birmingham area.
“Our evolutionary simulations have confirmed the Birmingham Blade is up to seven times more efficient than existing designs in Birmingham’s wind speeds and urban environment. The final design is not just a prototype — it is a predictive solution that is ready for real-world use.”
Developed by a research group led by Dr Kit Windows-Yule at the University of Birmingham, EvoPhase’s AI-led evolutionary design process mimics natural selection, this approach allows for simultaneous optimisation of many different parameters, avoiding traditional trade-offs between performance factors.
KwikFab produced the first iteration of the Birmingham Blade to demonstrate the feasibility of manufacturing the design. An aluminium version will be sited on a roof space in Birmingham for evaluation and testing, and the final product is expected to be available by late 2025.
The EvoPhase – KwikFab collaboration provides a rapid design and prototyping service, and the team is now working on another design for the very different conditions in Edinburgh.
Paul Jarvis from KwikFab is confident that there is sufficient talent and space in Birmingham to deliver quick turnaround from design to prototyping for wind turbines that are geographically tailored to specific local conditions around the rest of the world.
We can take a complex design, and manufacture and ship a prototype for testing within weeks. We’d like to work with organisations that want to make the most of wind power, a source of sustainable energy that is free, and present in every country.
Paul Jarvis, KwikFab Ltd
Since its launch in 2023, EvoPhase has expanded its AI-powered evolutionary design approach to industries beyond wind energy, including the optimisation of equipment for mixing, blending, and storing granular materials in the food, pharmaceutical, and chemical manufacturing sectors.EvoPhase’s collaboration with KwikFab demonstrates the broad applicability of their predictive designs.
It was made possible in part by the Manchester Prize which named the team as a finalist in the inaugural year of the prize in May 2024. The Manchester Prize is a multi-million-pound challenge prize from the UK’s Department for Science, Innovation and Technology to reward UK-led breakthroughs in artificial intelligence for public good.
https://www.birmingham.ac.uk/news/2024/ ... gned-by-ai
Video:
28 November 2024University of Birmigham,

Birmingham Blade launch event - prototype and people
Dr Kit Windows Yule, University of Birmingham, and Chief Scientific Officer, EvoPhase; Leonard Nicusan, Chief Technology Officer, EvoPhase; Dominik Werner, CEO, EvoPhase; David Coleman, CEO, University of Birmingham Enterprise; Jack Sykes, Chief Operating Officer, EvoPhase; John Cook, Entrepreneur-in-Residence, University of Birmingham Enterprise; Laura Bond, Entrepreneur-in-Residence, University of Birmingham Enterprise; Paul Jarvis, Managing Director, Kwik Fab Ltd
AI design specialists EvoPhase and precision metal fabricators KwikFab have unveiled the world’s first urban wind turbine designed by AI, and tailored to the unique wind conditions of a specific geographic area. The team has called it the Birmingham Blade.
The collaboration between EvoPhase and KwikFab provides a solution to one of the most pressing issues in the green energy landscape – how to produce small-scale, affordable, generators of clean wind energy.
EvoPhase used its AI-driven design process to generate and test designs for their efficiency at wind speeds found in Birmingham, which, at 3.6 m/s are substantially lower than the 10 metres per second rating for most turbines.
“We needed a turbine that could capture Birmingham’s relatively low wind speeds while managing turbulence caused by surrounding buildings,” explained Leonard Nicusan, Chief Technology Officer of EvoPhase. “The design also had to be compact and lightweight to suit rooftop installations."
EvoPhase found the optimal design for curved blades which spin around a central point, and confirmed that that it will be up to seven times more efficient than existing designs used in the Birmingham area.
Leonard Nicusan, Chief Technology Officer, EvoPhaseUsing AI was essential for breaking free from the long-standing biases that have influenced turbine designs for the past century. AI allowed us to explore design possibilities beyond the scope of traditional human experimentation. We were able to generate, test, and refine over 2,000 wind turbine designs in just a few weeks, significantly accelerating our development process and achieving what would have taken years and millions of pounds through conventional methods.
“Our evolutionary simulations have confirmed the Birmingham Blade is up to seven times more efficient than existing designs in Birmingham’s wind speeds and urban environment. The final design is not just a prototype — it is a predictive solution that is ready for real-world use.”
Developed by a research group led by Dr Kit Windows-Yule at the University of Birmingham, EvoPhase’s AI-led evolutionary design process mimics natural selection, this approach allows for simultaneous optimisation of many different parameters, avoiding traditional trade-offs between performance factors.
KwikFab produced the first iteration of the Birmingham Blade to demonstrate the feasibility of manufacturing the design. An aluminium version will be sited on a roof space in Birmingham for evaluation and testing, and the final product is expected to be available by late 2025.
The EvoPhase – KwikFab collaboration provides a rapid design and prototyping service, and the team is now working on another design for the very different conditions in Edinburgh.
Paul Jarvis from KwikFab is confident that there is sufficient talent and space in Birmingham to deliver quick turnaround from design to prototyping for wind turbines that are geographically tailored to specific local conditions around the rest of the world.
We can take a complex design, and manufacture and ship a prototype for testing within weeks. We’d like to work with organisations that want to make the most of wind power, a source of sustainable energy that is free, and present in every country.
Paul Jarvis, KwikFab Ltd
Since its launch in 2023, EvoPhase has expanded its AI-powered evolutionary design approach to industries beyond wind energy, including the optimisation of equipment for mixing, blending, and storing granular materials in the food, pharmaceutical, and chemical manufacturing sectors.EvoPhase’s collaboration with KwikFab demonstrates the broad applicability of their predictive designs.
It was made possible in part by the Manchester Prize which named the team as a finalist in the inaugural year of the prize in May 2024. The Manchester Prize is a multi-million-pound challenge prize from the UK’s Department for Science, Innovation and Technology to reward UK-led breakthroughs in artificial intelligence for public good.
https://www.birmingham.ac.uk/news/2024/ ... gned-by-ai
Video: