Compartir en las Redes !

Twitter Whatsapp Telegram Pinterest Linkedin Tumblr Reddit

Notas de energías renovables

Aquí puede comentar todo aquello que no sea de política, de economía, de temas sociales del día a día
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Sustainable Alternatives to Lithium Use in Batteries
Ben Pilkington, May 16 2022
Many electronic devices need lithium-ion batteries as a power source. However, lithium presents serious sustainability challenges. This article looks at the sustainable alternatives to lithium for battery applications.

Imagen
Image Credit: Black_Kira/Shutterstock.com

Lithium-ion batteries are the most common battery storage choice for grid operations today, supplying more than 90% of the world’s grid markets. This is because they can store energy efficiently without losing it for long periods of time.

They also feature in consumer electronics, such as smartphones and laptops, and most electric vehicle manufacturers. Lithium-ion batteries even drive research and exploration in space, powering the Mars Curiosity Rover, for example.

The Downside of Cleaner Electric Power
The development of lithium-ion batteries – and other improvements to battery technology – has helped the planet transition toward using cleaner electric power in the last few decades.

Reliable, long-lasting, and energy-efficient battery technology can enable emissions-free electric infrastructure to become widespread. It can also help us maximize the potential of renewable energy sources by storing and transporting energy from renewable sources worldwide and year-round.

However, lithium extraction to make lithium-ion batteries poses its own environmental challenges. In South America, lithium mining consumes approximately 2.2 million liters of freshwater per ton of lithium produced.

Extracting the toxic material damages soil, and mining operations contaminate the atmosphere by emitting fugitive particles.

Lithium-based batteries are also toxic when discarded. It is possible to recycle these and recover the lithium for future batteries, but lithium recycling is not well established and research in this area seems stagnant.

In response to these challenges, researchers worldwide are seeking alternatives. As well as the alternative materials discussed below, alternative production cycles are also recommended. These include better design to ensure longer-lasting batteries and a circular economy model to recover used material.

Aluminum
Aluminum is a readily available resource and one of the most recyclable materials.

It is also much cheaper than aluminum. In 2005, lithium was priced at around $1,460 per ton. This has risen sharply to approximately $13,000 per ton. But in the same period, aluminum’s price (initially more than lithium) only rose from $1,730 to $2,078 per ton.

As a result, many researchers are developing aluminum-based battery technology that could replace lithium. Some of these even perform better than conventional batteries.

Australian company Graphene Manufacturing Group (GMG) claims its aluminum-ion battery charges 60 times faster than conventional lithium-ion batteries.

The GMG battery is made with aluminum atoms inserted inside tiny perforations in graphene planes.

Seguir leyendo:
https://www.azocleantech.com/article.as ... cleID=1538
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Biomass Gasification and the Future of Hydrogen Fuel
Owais Ali, May 16 2022

Even though hydrogen is a clean energy carrier (fuel), its production adds significantly to the global carbon footprint. Furthermore, environment-friendly production of hydrogen is highly costly. But there is a better solution: biomass gasification.

Imagen
Image Credit: Shawn Hempel/Shutterstock.com

What is Biomass Gasification?
Biomass is any renewable organic material, such as agricultural crop residues, organic municipal solid trash, forestry waste, and animal waste. Converting these resources into fuel and gases at a high temperature is gasification. Biomass gasification is biofuel production from organic, renewable feedstock.

In this process, the biomass is dehydrated at 150 °C before being heated to 800–900 °C in a gasifier with an oxidizing agent. Due to increased heat, the dry waste residue degrades, and then complex solid hydrocarbons break down into flammable gases such as hydrogen and syngas. These gases can be utilized as fuel once separated and purified.

How is Biomass Gasification Currently Being Used?
Producer gas
The formation of combustible gases known as producer gas arises from the incomplete combustion of biomass during gasification. Producer gas can power internal combustion engines, replace furnace oil, and make methanol, which can be used as a heat engine fuel and a chemical feedstock for industries.

Syngas
Biomass gasification at a higher temperature with an oxidizing agent produces syngas. Syngas can be utilized for heating and the production of synthetic compounds such as ammonia, methanol and dimethyl ether.

Hydrogen production
Hydrogen can be produced via biomass gasification. This method utilizes a thermochemical reaction at high temperatures and low pressures. Hydrogen, carbon monoxide, methane, carbon dioxide, and other gases are produced due to this process.

If the goal is to optimize hydrogen production, the process should include syngas purification, a water–gas shift reaction to increase H2 concentration, and carbon capture technology to store CO2 emissions. Using carbon capture and storage, hydrogen generation from biomass is the only method that generates net-negative CO2 emissions.

Hydrogen production by biomass gasification contributes to resolving two critical environmental issues: growing waste stocks and the carbon-intensive hydrogen production method.

Seguir leyendo:
https://www.azocleantech.com/article.as ... cleID=1537
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Un poco noticia, un poco propaganda, pero aun así interesante.

Después de la primera temporada con calefacción: el edificio de mi empresa fotovoltaica es energéticamente autosuficiente
www.erneuerbareenergien.de, 23-05-2022

ImagenUn sistema fotovoltaico con 100 kilovatios en el techo a un agua y en la fachada alimenta el edificio - © my-PV © mi-PV

El proveedor de sistemas de calefacción eléctrica «My PV» ha evaluado la primera temporada de calefacción en el nuevo edificio de su empresa en Alta Austria. Los resultados son mejores de lo esperado.

El año pasado, el proveedor de calefacción eléctrica y soluciones de calefacción “My PV” se mudó a un nuevo edificio de la empresa en Neuzeug, Austria. Al construir la nueva dependencia, “My PV” también respetó plenamente la sostenibilidad y, por supuesto, instaló sus propios sistemas. Para ello instaló, en los cuartos del edifcio bien aislado, suelo radiante eléctrico, controlado por los reguladores de corriente llamados AC Thor de “My PV”. El agua también se calienta eléctricamente

Fotovoltaica en la envolvente del edificio
La electricidad es suministrada por varios sistemas fotovoltaicos. Por un lado, todo el techo está cubierto con módulos solares. Por otro lado, en las fachadas se montaron bandas verticales de módulos solares, que estéticamente quedan perfectamente integrados en la fachada de madera natural. Al menos eso dice el concepto. También suministran la electricidad para la planta industrial, la urbanización y las oficinas del edificio así como para las estaciones de carga para coches eléctricos que se han instalado delante del edificio.

Terminado el primer año de funcionamiento y, por tanto, la primera temporada de calefacción, “My PV” evalúa si el concepto ha funcionado. El resultado: incluso en invierno, el edificio es energéticamente autosuficiente. Los costes de funcionamiento son incluso negativos. La salida fotovoltaica de 100 kilovatios en la fachada y en el techo a un agua fue suficiente para suministrar más de la mitad de la energía para calefacción, movilidad, suministro de energía y calentamiento de agua.

Resultados positivos tras el mal invierno solar
En concreto, desde noviembre de 2021 hasta abril de 2022, «My PV» utilizó 17.344 kilovatios hora de los sistemas solares. La empresa extrajo otros 15.251 kilovatios hora de la red. Esto da como resultado un grado de autosuficiencia de alrededor del 53 por ciento incluso en invierno. "Es particularmente importante mencionar que los rendimientos solares en los meses problemáticos de diciembre y enero no alcanzaron las previsiones en comparación con el promedio a largo plazo y que la autosuficiencia sería aún mayor en un año promedio", explica Gerhard Rimpler, Director General de “Mi PV”.

Más producción que consumo
Pero “My PV” solo pudo usar parte de la electricidad de los sistemas solares directamente, porque los generadores han producido más. En general, “My PV” logra un autoconsumo del 53,4 por ciento con el Sistema, y la empresa inyectó 15.300 kilovatios hora de energía solar a la red durante el período en cuestión. Eso es incluso más de lo que extrajo de la red, lo que significa que el edificio produce incluso más energía de la que consume y es al menos autosuficiente en términos de equilibrio en todos los sectores de electricidad, calor y movilidad. "El objetivo del gobierno federal austriaco para 2030, es decir, la autosuficiencia, lo logramos incluso en la temporada de calefacción y en todos los sectores", resume Gerhard Rimpler el resultado positivo.

Consumo total medido
Para poder evaluar los datos con la mayor precisión posible, “My PV” registró todas las cantidades de energía antes de que el edificio comenzara a utilizarse. Además de la conexión a la red, la empresa también mide los flujos de energía del sistema solar, la calefacción eléctrica de espacios, el calentamiento de agua, el sistema de ventilación y aire acondicionado y las estaciones de carga. Los resultados de la medición muestran: desde noviembre de 2021 hasta abril de 2022, My PV utilizó 17 400 kilovatios hora para calefacción. Esto es muy poco en comparación con otros edificios de la empresa. Aquí valió la pena que “My PV” se basara en un estándar de construcción energéticamente eficiente para su edificio de 858 metros cuadrados superficie. Además de las ganancias internas y solares pasivas, solo se necesitan 20 kilovatios hora por metro cuadrado para mantener un clima interior agradable.

Consumidos 11.350 kilovatios hora de electricidad
Además de la calefacción, los coches eléctricos propios de la empresa cobraron tomaron .600 kilovatios hora en el periodo cubierto. Con esta cantidad de electricidad, los empleados han recorrido más de 20.000 kilómetros. Se utilizaron otros 270 kilovatios hora para calentar agua, pues “My PV” no necesita mucha agua en el edificio de la empresa. Además, hay 11.350 kilovatios hora de electricidad que My PV usó directamente, por ejemplo, para la iluminación, las máquinas de producción y el equipo de oficina, así como para el aire acondicionado.

Costos operativos cubiertos
Gracias al sistema solar, “My PV” require menos electricidad de la red y por tanto, ahorra mucho dinero. Además, están los ingresos de la electricidad entregada, lo que reduce aún más los costos de funcionamiento. En la planificación original, la empresa asumió que aún se incurriría en costos de energía de alrededor de 2.100 euros por año. Sin embargo, después de la primera temporada de calefacción, queda claro que los costes operativos son realmente negativos, lo que significa que “My PV” gana dinero. Esto no solo compensa los costos de electricidad de la red. El sistema solar también paga los costos de agua, alcantarillado, seguros e impuestos a la propiedad. "Como propietario de un edificio, es un negocio implementar la tecnología de calefacción con electricidad solar", enfatiza Rimpler. "Con la sede de nuestra empresa, estamos estableciendo nuevos estándares en el suministro de energía solar para edificios comerciales", dice con certeza.

https://www.erneuerbareenergien.de/tran ... rgieautark
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Researchers create highest efficiency 1-sun solar cell
May 24, 2022, DOE/National Renewable Energy Laboratory

Summary:
Researchers have created a solar cell with a record 39.5 percent efficiency under 1-sun global illumination. This is believed to be the highest efficiency solar cell of any type, measured using standard 1-sun conditions.


Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) created a solar cell with a record 39.5% efficiency under 1-sun global illumination. This is the highest efficiency solar cell of any type, measured using standard 1-sun conditions.

"The new cell is more efficient and has a simpler design that may be useful for a variety of new applications, such as highly area-constrained applications or low-radiation space applications," said Myles Steiner, a senior scientist in NREL's High-Efficiency Crystalline Photovoltaics (PV) Group and principal investigator on the project. He worked alongside NREL colleagues Ryan France, John Geisz, Tao Song, Waldo Olavarria, Michelle Young, and Alan Kibbler.

Details of the development are outlined in the paper "Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices," which appears in the May issue of the journal Joule.

NREL scientists previously set a record in 2020 with a 39.2% efficient six-junction solar cell using III-V materials.

Several of the best recent solar cells have been based on the inverted metamorphic multijunction (IMM) architecture that was invented at NREL. This newly enhanced triple-junction IMM solar cell has now been added to the Best Research-Cell Efficiency Chart. The chart, which shows the success of experimental solar cells, includes the previous three-junction IMM record of 37.9% established in 2013 by Sharp Corporation of Japan.

Seguir leyendo:
https://www.sciencedaily.com/releases/2 ... 171211.htm

Artículo fuente (Técnico):
https://www.cell.com/joule/fulltext/S25 ... all%3Dtrue
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Giant Deep Ocean Turbine Trial Offers Hope of Endless Green Power
Imagen
IHI's deep-ocean Kairyu has two counterrotating turbines.Source: IHI Corp./NEDO

Tested in one of the world’s strongest ocean currents, a prototype generator could herald the start of a new stream of renewable energy

Erica Yokoyama, 30. mai 2022, 23:00 CEST

Power-hungry, fossil-fuel dependent Japan has successfully tested a system that could provide a constant, steady form of renewable energy, regardless of the wind or the sun.

For more than a decade, Japanese heavy machinery maker IHI Corp. has been developing a subsea turbine that harnesses the energy in deep ocean currents and converts it into a steady and reliable source of electricity. The giant machine resembles an airplane, with two counter-rotating turbine fans in place of jets, and a central ‘fuselage’ housing a buoyancy adjustment system. Called Kairyu, the 330-ton prototype is designed to be anchored to the sea floor at a depth of 30-50 meters (100-160 feet).

In commercial production, the plan is to site the turbines in the Kuroshio Current, one of the world’s strongest, which runs along Japan’s eastern coast, and transmit the power via seabed cables.

“Ocean currents have an advantage in terms of their accessibility in Japan,” said Ken Takagi, a professor of ocean technology policy at the University of Tokyo Graduate School of Frontier Sciences. “Wind power is more geographically suited to Europe, which is exposed to predominant westerly winds and is located at higher latitudes.” Japan’s New Energy and Industrial Technology Development Organization (NEDO) estimates the Kuroshio Current could potentially generate as much as 200 gigawatts — about 60% of Japan’s present generating capacity.

Like other nations, the lion’s share of investment in renewables has gone into wind and solar, especially after the Fukushima nuclear disaster curbed that nation’s appetite for atomic energy. Japan is already the world’s third largest generator of solar power and is investing heavily in offshore wind, but harnessing ocean currents could provide the reliable baseline power needed to reduce the need for energy storage or fossil fuels.

The advantage of ocean currents is their stability. They flow with little fluctuation in speed and direction, giving them a capacity factor — a measure of how often the system is generating — of 50-70%, compared with around 29% for onshore wind and 15% for solar.

In February, IHI completed a 3 ½ year-long demonstration study of the technology with NEDO. Its team tested the system in the waters around the Tokara Islands in southwestern Japan by hanging Kairyu from a vessel and sending power back to the ship. It first drove the ship to artificially generate a current, and then suspended the turbines in the Kuroshio.

The tests proved the prototype could generate the expected 100 kilowatts of stable power and the company now plans to scale up to a full 2 megawatt system that could be in commercial operation in the 2030s or later.

Like other advanced maritime nations, Japan is exploring various ways of harnessing energy from the sea, including tidal and wave power and ocean thermal energy conversion (OTEC), which exploits the difference in temperature between the surface and the deep ocean. Mitsui OSK Lines Ltd. has invested in UK-based Bombora Wave Power to explore the potential for the technology in Japan and Europe. The company is also promoting OTEC and began operating a 100 kW demonstration facility in Okinawa in April, according to Yasuo Suzuki, general manager of the corporate marketing division. Kyushu Electric’s renewable unit Kyuden Mirai Energy begins a 650 million yen ($5.1 million) feasibility test this year to produce 1 MW of tidal power around the Goto Islands in the East China Sea. The government this month also proposed changes to offshore wind auctions that could speed up development.

Among marine-energy technologies, the one advancing fastest towards cost-effectiveness is tidal stream, where “the technology has advanced quite a long way and it definitely works,” said Angus McCrone, a former BloombergNEF chief editor and marine energy analyst. Scotland-based Orbital Marine Power is one of several companies constructing tidal systems around Orkney, location of the European Marine Energy Centre. Others include SIMEC Atlantis Energy’s MeyGen array and California-based Aquantis, founded by US wind pioneer James Dehlsen, which reportedly plans to start testing a tidal system there next year.

While tidal flows don’t run 24 hours, they tend to be stronger than deep ocean currents. The Kuroshio current flows at 1 to 1.5 meters per second, compared with 3 meters per second for some tidal systems. “The biggest issue for ocean current turbines is whether they could produce a device that would generate power economically out of currents that are not particularly strong,” said McCrone.

Ocean Energy Systems, an intergovernmental collaboration established by the International Energy Agency, sees the potential to deploy more than 300 gigawatts of ocean energy globally by 2050.

But the potential for ocean energy is location dependent, taking into account the strength of currents, access to grids or markets, maintenance costs, shipping, marine life and other factors. In Japan, wave energy is moderate and unstable through the year, while areas with strong tidal currents tend to have heavy shipping traffic, Takagi said. And OTEC is better suited to tropical regions where the temperature gradient is bigger. One of the advantages of the deep ocean current is it doesn’t restrict navigation of ships, IHI said.

Imagen
Testing Kairyu off Yakushima Island in 2021.Source: IHI Corp./NEDO

Still, the Japanese company has a long way to go. Compared with onshore facilities, it’s much more complicated to install a system underwater. “Unlike Europe, which has a long history of the North Sea Oil exploration, Japan has had little experience with offshore construction,” said Takagi. There are major engineering challenges to build a system robust enough to withstand the hostile conditions of a deep ocean current and to reduce maintenance costs.

“Japan isn’t blessed with a lot of alternative energy sources,” he said. “People may say that this is just a dream, but we need to try everything to achieve zero carbon.”

With the cost of wind and solar power and battery storage declining, IHI will also need to demonstrate that overall project costs for ocean current power are competitive. IHI aims to generate power at 20 yen per kilowatt-hour from large-scale deployment. That compares with about 17 yen for solar in the country and about 12-16 yen for offshore wind. IHI also said it conducted an environmental assessment before it launched the project and will use the test results to examine any impact on the marine environment and fishing industry.

If successful at scale, deep ocean currents could add a vital part in providing green baseline power in the global effort to phase out fossil fuels. IHI’s work could help Japan’s engineering take a leading role with government support, said McCrone.

IHI has to make a convincing argument that “Japan could benefit from being a technology leader in this area,” he said.

https://www.bloomberg.com/news/features ... ssil-fuels
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Solid Power, backed by Ford and BMW, begins pilot production of innovative EV battery with longer range and quicker recharging
John Rosevear, Mon 06-Jun-2022

Imagen
Solid Power’s 22-layer, 20Ah all solid-state lithium metal cell compared to the company’s first-generation 10-layer, 2Ah cell.

Solid Power, a Colorado-based battery start-up backed by BMW and Ford Motor, said it has begun pilot production of an innovative solid-state battery cell that promises to offer electric-vehicle owners more range and shorter recharging times at lower cost.

Solid-state batteries are so called because they do away with the liquid or gel electrolyte found in current lithium-ion batteries. In electric vehicles, they have the potential to offer more range, shorter recharging times and a lower risk of fires than lithium-ion batteries — all compelling benefits that have drawn big investments from automakers over the last several years.

But a solid-state battery design that can stand up to years of use in an electric vehicle — and that can be mass-produced at reasonable cost — has eluded researchers for decades. That’s expected to change within a couple of years.

Solid Power’s effort is one of several underway that aims to bring solid-state battery cells to market for use in electric vehicles. Its rivals range from public companies such as QuantumScape to private efforts funded by giants such as Toyota.

Solid Power’s advantage might be unique: While at least some rivals’ designs will require costly specialized factories, Solid Power said its batteries can be produced using the tooling and processes already in place in current factories making lithium-ion battery cells.

Solid Power’s pilot production line will produce batteries in small numbers for internal testing, as it works to refine its battery design and fine-tune its manufacturing approach.

The company expects to begin shipping batteries to its automotive partners, BMW and Ford, for testing in prototype vehicles by the end of this year, CEO Doug Campbell said — a key step in the “validation” process needed to supply batteries to automakers at scale.

Campbell told CNBC that if all goes well, he expects the automakers to sign off on Solid Power’s battery design sometime in the first half of 2024.

The company would then hand off its design to an existing battery manufacturer for mass production, suggesting the first vehicles to use Solid Power’s innovative batteries could be available within a few years.

https://www.cnbc.com/2022/06/06/solid-p ... ttery.html
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

A new heat engine with no moving parts is as efficient as a steam turbine
The design could someday enable a fully decarbonized power grid, researchers say.
Jennifer Chu | MIT News Office, April 13, 2022

Imagen
A thermophotovoltaic cell
Caption:A thermophotovoltaic (TPV) cell (size 1 cm x 1 cm) mounted on a heat sink designed to measure the TPV cell efficiency. To measure the efficiency, the cell is exposed to an emitter and simultaneous measurements of electric power and heat flow through the device are taken.
Credits:Image: Felice Frankel


Engineers at MIT and the National Renewable Energy Laboratory (NREL) have designed a heat engine with no moving parts. Their new demonstrations show that it converts heat to electricity with over 40 percent efficiency — a performance better than that of traditional steam turbines.

The heat engine is a thermophotovoltaic (TPV) cell, similar to a solar panel’s photovoltaic cells, that passively captures high-energy photons from a white-hot heat source and converts them into electricity. The team’s design can generate electricity from a heat source of between 1,900 to 2,400 degrees Celsius, or up to about 4,300 degrees Fahrenheit.

The researchers plan to incorporate the TPV cell into a grid-scale thermal battery. The system would absorb excess energy from renewable sources such as the sun and store that energy in heavily insulated banks of hot graphite. When the energy is needed, such as on overcast days, TPV cells would convert the heat into electricity, and dispatch the energy to a power grid.

With the new TPV cell, the team has now successfully demonstrated the main parts of the system in separate, small-scale experiments. They are working to integrate the parts to demonstrate a fully operational system. From there, they hope to scale up the system to replace fossil-fuel-driven power plants and enable a fully decarbonized power grid, supplied entirely by renewable energy.

“Thermophotovoltaic cells were the last key step toward demonstrating that thermal batteries are a viable concept,” says Asegun Henry, the Robert N. Noyce Career Development Professor in MIT’s Department of Mechanical Engineering. “This is an absolutely critical step on the path to proliferate renewable energy and get to a fully decarbonized grid.”

Henry and his collaborators have published their results today in the journal Nature. Co-authors at MIT include Alina LaPotin, Kyle Buznitsky, Colin Kelsall, Andrew Rohskopf, and Evelyn Wang, the Ford Professor of Engineering and head of the Department of Mechanical Engineering, along with Kevin Schulte and collaborators at NREL in Golden, Colorado.

Seguir leyendo:
https://news.mit.edu/2022/thermal-heat-engine-0413
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

BASF está construyendo una planta de reciclaje de baterías en Lusacia
01.07.2022 14:30 © BASF SE
Imagen
Así es como se verá la planta de reciclaje en Schwarzheide, operada con electricidad verde, por supuesto. Reduce la huella de CO2 de los autos eléctricos

A partir de 2025, BASF reciclará completamente las baterías viejas trituradas en Schwarzheide. Luego, la planta recupera materiales para nuevas baterías de iones de litio, en línea con una economía circular.

El grupo empresarial químico BASF construirá una planta en su local de Schwarzheide en Lusacia para recuperar, a escala industrial, la materia negra de las baterías, que es la que resulta después de la trituración y el tratamiento especial de las baterías de iones de litio. Contiene todos los elementos como litio, manganeso, cobalto, níquel y todos los demás elementos raros.

Recuperar elementos separados
Esta masa negra se procesa hidrometalúrgicamente en la nueva planta de Schwarzheide. Esto significa que se funde y los componentes individuales se filtran dependiendo de la temperatura de fusión. Con la nueva planta, BASF pretende dotar al local de Schwarzheide con experiencia en la fabricación y reciclaje de materiales para baterías, pues los materiales recuperados se pueden volver a utilizar para fabricar nuevas baterías.

Reducir la huella de carbono de los coches eléctricos
Está previsto que la nueva instalación esté terminada para 2025. "Con la inversión en una planta de reciclaje de baterías a gran escala para masa negra, estamos dando el siguiente paso para establecer toda la cadena de valor del reciclaje de baterías en BASF", explica Peter Schuhmacher, jefe de la división Catalysts de BASF. “Esto nos permite optimizar todo el proceso de reciclaje y reducir la huella de carbono. El ciclo cerrado desde las baterías usadas hasta los materiales de cátodo para baterías nuevas respalda a nuestros clientes a lo largo de toda la cadena de valor de la batería, reduce la dependencia de las materias primas extraídas y permite una economía circular”.

Se toma en cuenta la economía circular
Finalmente, el reciclaje de baterías es una palanca importante para reducir la huella de carbono de los vehículos eléctricos. Con la planta, BASF está construyendo para las regulaciones políticas esperadas, que no solo están orientadas hacia la economía circular en el sector de las baterías. Estos también apuntarán al reciclaje eficiente de baterías de iones de litio con objetivos para la recuperación de materiales y el contenido reciclado de níquel, cobalto y litio en el nuevo almacenamiento, anticipa BASF.

https://www.erneuerbareenergien.de/tran ... er-lausitz
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Hydrovolt: Europe's Largest Electric Vehicle Battery Recycling Plant
By Owais AliJun 30 2022
Reviewed by Laura Thomson


Hydrovolt, Europe's largest electric vehicle (EV) battery recycling plant, has begun operations in Norway. With a clean and innovative approach, it expects to recycle 500,000 EV batteries by 2030.

Imagen
Image Credit: asharkyu/Shutterstock.com

Hydrovolt: An Overview
Hydrovolt, a joint venture of Hydro and Northvolt, is recycling electric vehicle batteries at its plant in Norway. It is now the biggest EV battery recycling facility in Europe with the capacity to recycle 12,000 tons of batteries annually, equivalent to approximately 25,000 electric vehicle batteries.

The Hydrovolt recycling plant is completely automated and will run on renewable energy. It can recycle up to 95 percent of metals from EV batteries, including aluminum, copper, plastic, and ferrous metals, as well as black powder comprising cobalt, manganese, nickel, and lithium.

Hydrovolt provides a sustainable solution for the end-of-life management of EV batteries and contributes to a circular economy by recovering valuable metals and other materials using innovative and clean technology.

What Will the Hydrovolt Recycling Plant Be Used For?
The plant will process more than 8,000 tons of automotive battery modules annually, roughly equivalent to 23,000 mid-size electric vehicle battery packs. Useful materials will be sent for reproduction after recycling and separation of raw materials.

Recycled aluminum will be provided to Hydro for recirculation into commercial-grade aluminum products. Black mass, which contains cobalt, manganese, nickel, lithium, and graphite, will be transferred to Northvolt battery facilities in Sweden for additional recycling.

With the help of recycled black mass, these facilities will have sufficient materials to produce 4 GWh of new battery cells.

As a result of Hydrovolt's strategy, most of the valuable material from the batteries is recovered and reused in the manufacturing of new products, with very little material discarded.

By 2030, Hydrovolt intends to source half of all battery feedstock from recycled batteries. This is a massive undertaking, given that the demand for electric vehicles will continue to skyrocket.

Seguir leyendo:
https://www.azocleantech.com/article.as ... cleID=1594
Caminante
Mensajes: 4234
Registrado: Jue Dic 23, 2021 5:26 am

Re: Notas de energías renovables

Mensaje por Caminante »

Fermat escribió: Lun Jul 11, 2022 9:23 am Hydrovolt: Europe's Largest Electric Vehicle Battery Recycling Plant
By Owais AliJun 30 2022
Reviewed by Laura Thomson


Hydrovolt, Europe's largest electric vehicle (EV) battery recycling plant, has begun operations in Norway. With a clean and innovative approach, it expects to recycle 500,000 EV batteries by 2030.

Noruega es el pais con mas autos electricos per capita, bastante arriba del segundo lugar. La cantidad de autos electricos que circulan por las calles noruegas es realmente impresionante y los centros de recarga estan ampliamente distribuidos en el pais.

Lo que esta haciendo Norsk Hydro con su joint venture, con apoyo del gobierno por supuesto, es anticipar el problema del stock de baterias en un futuro cercano. Esto es algo muy importante dentro del mercado de los autos electricos y sus baterias.
Your beliefs do not make something true. Science doesn't care what you believe in.
Caminante
Mensajes: 4234
Registrado: Jue Dic 23, 2021 5:26 am

Re: Notas de energías renovables

Mensaje por Caminante »

Fermat escribió: Sab May 21, 2022 6:27 am Biomass Gasification and the Future of Hydrogen Fuel
Owais Ali, May 16 2022

Even though hydrogen is a clean energy carrier (fuel), its production adds significantly to the global carbon footprint. Furthermore, environment-friendly production of hydrogen is highly costly. But there is a better solution: biomass gasification.


What is Biomass Gasification?
Biomass is any renewable organic material, such as agricultural crop residues, organic municipal solid trash, forestry waste, and animal waste. Converting these resources into fuel and gases at a high temperature is gasification. Biomass gasification is biofuel production from organic, renewable feedstock.

In this process, the biomass is dehydrated at 150 °C before being heated to 800–900 °C in a gasifier with an oxidizing agent. Due to increased heat, the dry waste residue degrades, and then complex solid hydrocarbons break down into flammable gases such as hydrogen and syngas. These gases can be utilized as fuel once separated and purified.

How is Biomass Gasification Currently Being Used?
Producer gas
The formation of combustible gases known as producer gas arises from the incomplete combustion of biomass during gasification. Producer gas can power internal combustion engines, replace furnace oil, and make methanol, which can be used as a heat engine fuel and a chemical feedstock for industries.

Syngas
Biomass gasification at a higher temperature with an oxidizing agent produces syngas. Syngas can be utilized for heating and the production of synthetic compounds such as ammonia, methanol and dimethyl ether.

Hydrogen production
Hydrogen can be produced via biomass gasification. This method utilizes a thermochemical reaction at high temperatures and low pressures. Hydrogen, carbon monoxide, methane, carbon dioxide, and other gases are produced due to this process.

If the goal is to optimize hydrogen production, the process should include syngas purification, a water–gas shift reaction to increase H2 concentration, and carbon capture technology to store CO2 emissions. Using carbon capture and storage, hydrogen generation from biomass is the only method that generates net-negative CO2 emissions.

Hydrogen production by biomass gasification contributes to resolving two critical environmental issues: growing waste stocks and the carbon-intensive hydrogen production method.

Seguir leyendo:
https://www.azocleantech.com/article.as ... cleID=1537
Esto es cierto, la produccion de Hidrogeno implica un alto consumo de energia, y la eficiencia implica perdidas de energia en el proceso. Usar energias renovables es indispensable para este mercado, sin embargo, se cuestiona tambien por sus perdidas energeticas y la eficiencia de los sistemas que usan hidrogeno como combustibøle.

Por otro lado, el transporte de hydrogeno con hydrogen carriers implica otro consumo adicional de energia para mantener las condiciones de almacenamiento durante el transporte.

Es un energy carrier necesario pero que aun tiene retos, no dudo sea una alternativa.
Your beliefs do not make something true. Science doesn't care what you believe in.
Caminante
Mensajes: 4234
Registrado: Jue Dic 23, 2021 5:26 am

Re: Notas de energías renovables

Mensaje por Caminante »

Traigo un forecast desarrollado por DNV sobre mercado de hidrogeno, el reporte puede descargarse gratis.

https://www.dnv.com/news/hydrogen-at-ri ... 2Dcentury.

"Según Hydrogen Forecast to 2050, el hidrógeno verde a base de electricidad, producido al separar el hidrógeno del agua mediante electrolizadores, será la forma dominante de producción a mediados de siglo, y representará el 72% de la producción. Esto requerirá un excedente de energía renovable, para alimentar una capacidad de electrolizador de 3.100 gigavatios. Esto es más del doble de la capacidad de generación total instalada de energía solar y eólica en la actualidad."
Your beliefs do not make something true. Science doesn't care what you believe in.
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Mechanochemical breakthrough unlocks cheap, safe, powdered hydrogen
Loz Blain, July 18, 2022

Imagen
Deakin researchers have described a novel mechanochemical process that can store gases safely in powders, using very little energy, in a repeatable processDepositphotos

Australian scientists say they've made a "eureka moment" breakthrough in gas separation and storage that could radically reduce energy use in the petrochemical industry, while making hydrogen much easier and safer to store and transport in a powder.

Nanotechnology researchers, based at Deakin University's Institute for Frontier Materials, claim to have found a super-efficient way to mechanochemically trap and hold gases in powders, with potentially enormous and wide-ranging industrial implications.

Mechanochemistry is a relatively recently coined term, referring to chemical reactions that are triggered by mechanical forces as opposed to heat, light, or electric potential differences. In this case, the mechanical force is supplied by ball milling – a low-energy grinding process in which a cylinder containing steel balls is rotated such that the balls roll up the side, then drop back down again, crushing and rolling over the material inside.

The team has demonstrated that grinding certain amounts of certain powders with precise pressure levels of certain gases can trigger a mechanochemical reaction that absorbs the gas into the powder and stores it there, giving you what's essentially a solid-state storage medium that can hold the gases safely at room temperature until they're needed. The gases can be released as required, by heating the powder up to a certain point.

Imagen
Mechanochemical separation of gases using ball milling

The process is repeatable, and Professor Ian Chen, co-author on the new study published in the journal Materials Today, tells us via phone that the boron nitride powder used in the first experiments only loses "about a couple of percent" of its absorption capability each storage and release cycle. "Boron nitride is very stable," he tells us, "and graphene too. We're looking at a restoration treatment that can clean the powders and restore their absorption levels, but we need to prove that it'll work."

Seguir leyendo:
https://newatlas.com/energy/mechanochem ... -hydrogen/
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

EV batteries: Recycling startup extracts cobalt, nickel 100 times faster
Japan's Emulsion Flow Technologies aims to begin commercial operations next year

Imagen
Hirochika Naganawa, chief technology officer at Japanese startup Emulsion Flow Technologies, previously worked for Japan's atomic energy agency. (Photo courtesy of Emulsion Flow Technologies)

TOMOYUKI ENDO, Nikkei staff writer, July 15, 2022 15:15 JST

TOKYO -- As companies scramble for the resources to power electric vehicles, a Japanese startup aims to slash the time and cost needed to extract cobalt, nickel and other metals from used EV batteries.

Hirochika Naganawa and his team at Japanese startup Emulsion Flow Technologies say they have developed an extraction process that is 100 times faster than the conventional approach. The company is working on commercializing the process.

"Technology that hadn't changed since around 1950 has finally moved forward," said Naganawa, EFT's chief technology officer and the man behind the discovery.

The "emulsion" in EFT refers to a frothy blend of oil and water. Oil and water normally do not mix. When they do form an emulsion, they are slow to separate.

EFT's method creates a flow that carries away cobalt, nickel and other metals in a watery solution on tiny droplets of oil. The droplets coalesce quickly, allowing the metals to be collected.

Seguir leyendo:
https://asia.nikkei.com/Business/Startu ... mes-faster
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Ho por hoy es una técnica experimental, pero obviamente va a evolucionar.

All-in-one solar tower produces jet fuel from CO2, water and sunlight
Loz Blain, July 20, 2022

Imagen
Taking sunlight, water and carbon dioxide as inputs, this solar tower in Spain produces carbon-neutral jet fuel and diesel
ETH Zurich


Taking carbon dioxide, water and sunlight as its only inputs, this solar thermal tower in Spain produces carbon-neutral, sustainable versions of diesel and jet fuel. Built and tested by researchers at ETH Zurich, it's a promising clean fuel project.

Why do we need sustainable aviation fuel (SAF)?
Fossil fuels can be replaced with batteries or hydrogen in cars and trucks – but aircraft are trickier. With more than 25,000 commercial airliners in service today, and service lifetimes around 25 years, airlines are looking to carbon-neutral fuels to bring down their emissions. It's a transitional step, but an important one until clean aviation tech is ready and the entire global fleet can be converted to something else.

Carbon-neutral fuels are drop-in replacements for today's kerosene Jet-A fuel; they mix in with regular fuel and get burned in jet engines as per normal, producing the normal amount of carbon emissions. The difference is that rather than pulling that carbon straight out of the ground, carbon-neutral fuels grab CO2 from elsewhere; it'll still end up in the atmosphere, but at least it does some useful work before it gets there, and every gallon burned is a gallon of conventional fuel that wasn't burned.

How is SAF currently made?
There are a lot of ways to make carbon-neutral fuels – and not all of those are acceptable for other reasons. Biofuels grown from specially raised corn crops, for example, create their own emissions, from fertilizers and farm equipment, and they use land that could otherwise be producing food. Chopping down forests and using the wood as biomass is also out, for reasons that should be obvious, but the fact that there are rules in place around this suggests that even in the sustainability game, there are still bad-faith operators.

Landfill waste-to-jet-fuel plants are popping up here and there, taking municipal garbage or old cooking oil and using that as a feedstock to create syngas, which can be refined into synthetic fuels. But the pyrolysis process usually involved requires a lot of energy – either dirty energy or clean energy that could be used elsewhere – and the feedstock is so wildly random that the resulting fuels sometimes need an extra, energy-intensive cleaning step before they're ready to go save the planet in a Dreamliner.

Another way is to capture carbon directly from other emissions sources, and convert that into fuel. This can be done by using green electricity to power an electrolyzer, then mixing the resulting hydrogen with carbon monoxide to create syngas, which can then be refined into fuels – but there are energy losses at each of these steps.

Which brings us to this new, much simpler design out of ETH Zurich, which has been built and tested at the IMDEA Energy Institute in Spain.

Imagen
The 50-kW pilot reactor, installed in Spain, uses heat from a concentrating solar tower to drive a thermochemical redox cycle - ETH Zurich

ETH Zurich's all-in-one carbon-neutral fuel tower
This pilot plant runs on concentrating solar thermal energy. One hundred and sixty-nine sun-tracking reflector panels, each presenting three square meters (~32 sq ft) of surface area, redirect sunlight into a 16-cm (6.3-in) hole in the solar reactor at the top of the 15-m-tall (49-ft) central tower. This reactor receives an average of about 2,500 suns' worth of energy – about 50 kW of solar thermal power.

Seguir leyendo:
https://newatlas.com/energy/solar-jet-fuel-tower/
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Abre en el embalse de Alqueva el mayor parque solar flotante de Europa
El mismo es capaz de abastecer de energía a 1.500 familias y mide como cuatro campos de fútbol
Paula Fernández - EFE - Alqueva. (Portugal) | 15·07·22

Imagen
Planta fotovoltaica flotante en Alqueva. NUNO VEIGA. EFE

La eléctrica portuguesa EDP ha inaugurado este viernes el mayor parque solar flotante situado en un embalse de Europa, en Alqueva, capaz de abastecer energía para 1.500 familias y que forma parte de la apuesta de la empresa por las energías renovables en medio de la escalada de precios del gas.

"Las renovables son la respuesta también al tema del coste", defendió el consejero delegado de EDP, Miguel Stilwell d'Andrade, durante la inauguración en Alqueva, en el Alentejo (sur), donde recordó que en Portugal se han conseguido precios en las subastas por debajo de los 20 euros por megavatio hora (MWh).

El parque solar, con una inversión de 6 millones de euros y una única conexión a la red, tiene el tamaño de cuatro campos de fútbol y está formada por cerca de 12.000 paneles fotovoltaicos.

Situada en el mayor embalse de Europa occidental, sobre el río Guadiana y próxima a la frontera con Extremadura, la plataforma se ha construido en unos seis meses y se colocó el pasado mayo en su destino definitivo sobre las aguas del Alqueva, donde ya está en funcionamiento.

El proyecto tiene una capacidad instalada de 5 megavatios (MW), así como 2 megavatios hora (MWh) de almacenamiento en baterías.

Este híbrido entre energía solar, hídrica y baterías es capaz de generar 7,5 gigavatios hora (GWh) al año y abastecer al 30 % de la población de la región circundante.

Una de las novedades de este proyecto respecto a otros son los flotadores, una mezcla de plástico reciclado y compuestos de corcho, que permiten reducir un 16 % su huella de carbono.

Seguir leyendo:
https://www.elperiodicoextremadura.com/ ... 81832.html
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

World’s first large-scale ‘sand battery’ goes online in Finland
Cameron Murray, July 6, 2022

Imagen
sand battery thermal storage Polar Night Energy’s sand-based thermal storage system. Image: Polar Night Energy.

The first commercial sand-based thermal energy storage system in the world has started operating in Finland, developed by Polar Night Energy.

Polar Night Energy’s system, based on its patented technology, has gone online on the site of a power plant operated by utility Vatajankoski.

The 4×7 metre steel container contains hundreds of tonnes of sand which can be heated to a temperature of 500-600 degrees Celsius. The sand is heated with renewable electricity and stored for use in the local district heating system.

It has a particularly strong use case in Finland which sees long and very cold winters, and was recently cut off from Russian gas supplies over a payments dispute. The storage system’s developers say it is cheap and easy to build.

The system can discharge a maximum of 100kW of heat power and has a total energy capacity of 8MWh, equating to up to 80 hours’ storage duration, but now authorities want to scale the system to one a thousand times bigger, or 8GWh, according to a report from UK broadcaster BBC.

“This innovation is a part of the smart and green energy transition. Heat storages can significantly help to increase intermittent renewables in the electrical grid. At the same time we can prime the waste heat to usable level to heat a city. This is a logical step towards combustion-free heat production,” said Markku Ylönen, co-founder of Polar Night Energy.

Vatajankoski also uses the heat provided by the storage to prime the waste heat recovered from their data servers so that it can also be fed into the district heating network.

It is the second major thermal storage facility based on a unique (if not novel) technological solution that has progressed this week. Swedish public utility Vattenfall is about to start filling a 200MW-rated thermal energy storage facility, effectively a giant water tank, in Berlin.

https://www.energy-storage.news/worlds- ... n-finland/
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

La compañía de energía RWE prevé producir hidrógeno en un parque eólico marino
Tilman Weber 17/07/2022 18:52

Nordsee dos puede ser uno de los primeros parques eólicos marinos comerciales en producir hidrógeno in situ, con turbinas de 15 megavatios.
Imagen
Ilustración de la producción de hidrógeno en la base flotante de un aerogenerador frente a Nantes. El proyecto piloto está programado para iniciar operaciones en 2022. - © Lhyfe/DORiS © Lhyfe/DORiS

Después de la puesta en marcha en 2026, el parque eólico Nordsee Two también podría producir hidrógeno directamente en el área de la planta a partir de la energía eólica que generó. Varias empresas, entre ellas RWE, están desarrollando actualmente la electrólisis de la fuente de energía, especialmente importante y valiosa para la transición energética en Europa, directamente en las plataformas de acceso de los aerogeneradores del proyecto de investigación H2Mare. Si bien está previsto que H2Mare se complete en 2025 con la construcción de una planta piloto de electrólisis de energía eólica marina, Nordsee 2 recién podría empezar a implementar la tecnología comercialmente un año después. RWE está desarrollando el parque eólico Nordsee 2 de 433 megavatios (MW) junto con la empresa canadiense de energía Northland Power. Sin embargo, RWE ahora ha recibido financiación para Nordsee 2 del Fondo de Innovación de la UE, un fondo de subvenciones de la Unión Europea (UE), para el uso de tecnología especialmente innovadora.

Como anuncian ahora RWE y Northland, el sistema de electrólisis producirá el hidrógeno para repostar barcos y generar el suministro de energía de emergencia para los sistemas y la plataforma del transformador a partir de la energía eólica generada por el mismo. A principios de año, los socios formaron una empresa conjunta para la construcción de parques eólicos marinos, que también construirá y operará Nordsee 2. RWE recibió el pago de compensación de la Agencia Federal de Redes (BNetzA) en septiembre de 2021, cuando BNetzA otorgó el contrato del proyecto del campo N3.8, desarrollado principalmente por la autoridad marina BSH. Fue una de las tres adjudicaciones en la primera ronda de licitación del llamado modelo de licitación central de acuerdo con la Ley de Energía Eólica en el Mar (WindSeeG) de 2017. La segunda ronda de licitación de WindSeeG se completará en septiembre de 2022.

Además, los socios ahora hacen que se quiere equipar el proyecto con turbinas de 15 MW. El primer proyecto en el Mar del Norte alemán con los actuales aerogeneradores de mayor potencia será el parque eólico He Dreiht de 900 MW, cuya finalización está prevista actualmente para 2025. Sin embargo, todos los fabricantes de turbinas eólicas que han anunciado turbinas de 15 MW todavía están desarrollando estos sistemas.

Fuente:
https://www.erneuerbareenergien.de/tech ... m-offshore
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Blowhole wave energy generator exceeds expectations in 12-month test
Loz Blain, July 31, 2022

Imagen
The UniWave 200 has been making reliable, clean energy for Australia's King Island for a year now, delivering better performance than expected

Wave Swell Energy's remarkable UniWave 200 is a sea platform that uses an artificial blowhole formation to create air pressure changes that drive a turbine and feed energy back to shore. After a year of testing, the company reports excellent results.

As we've discussed before, the UniWave system is a floatable device that can be towed to any coastal location and connected to the local energy grid. It's designed so that wave swells force water into a specially designed concrete chamber, pressurizing the air in the chamber and forcing it through an outlet valve. Then as the water recedes, it generates a powerful vacuum, which sucks air in through a turbine at the top and generates electricity that's fed into the grid via a cable.

As a result, it draws energy from the entire column of water that enters its chamber, a fact the team says makes it more efficient than wave energy devices that only harvest energy from the surface or the sea floor.
Imagen
The UniWave 200 in place off King Island, TasmaniaWave Swell Energy

WSE's key innovation here is that one-way generation; other devices that harvest the same effect use bi-directional turbines, requiring the ability to reverse blade pitch or redirect the airflow. WSE says its design allows for far cheaper and simpler turbines, that should also last longer since they're not getting as much salt water splashed through them when a big wave hits. Indeed, all this device's moving parts are above the waterline, a fact that should help extend its service life as well as making it completely harmless to marine life.

Seguir leyendo:
https://newatlas.com/energy/blowhole-wa ... generator/
Fermat
Mensajes: 1597
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Powdered sodium battery design promises a 15% leap in energy density
Nick Lavars, August 02, 2022

Imagen
Scientists testing a novel chemistry in a coin cell battery configuration have made a promising advance for sodium-ion batteries

With real uncertainty clouding the world's supply of lithium, alternative battery chemistries will be crucial as we continue our uptake of electric vehicles and mobile devices. One exciting candidate in this space is sodium-ion, and a research team in Russia has developed a novel battery of this ilk that boasts some impressive energy density, and may also be resistant to low temperatures.

Sodium-ion batteries are gaining attention as a more sustainable alternative to lithium-ion, owing to the relative abundance and low-cost of the element. These batteries work much like lithium-ion devices, bouncing ions between a pair of electrodes via a liquid electrolyte. The new research, from scientists at Skoltech and Lomonosov Moscow State University, focuses on the negative electrode, called the cathode.

The team has developed a novel cathode material, and one that promises significant gains in energy density. It is a powder made of sodium-vanadium phosphate fluoride, which is also an approach being explored by researchers elsewhere. But by carefully configuring how the atoms are organized within their powder, the scientists believe they've taken a big step forward.

“Both our new material and the one the industry has recently deployed are called sodium-vanadium phosphate fluoride – they’re made of atoms of the same elements," said Skoltech's Stanislav Fedotov, study author. "What makes them different is how those atoms are arranged and in what ratio they are contained in the compound."

The team deployed their novel cathode material in a coin-cell configuration sodium-ion battery and put it to the test, finding that it offered an increase in energy density of up to 15% compared to the current leading designs. Further, the new material could also allow sodium-ion batteries to function in colder climates, according to the researchers.

“Higher energy storage capacity is just one of the advantages of this material," said Fedotov. It also enables the cathode to operate at lower ambient temperatures, which is particularly relevant for Russia.”

The scientists say there is need for more research into these types of materials, but with further work they see these batteries being put to use in heavy electric vehicles such as buses and trucks. Storage of energy from renewable sources such as wind and solar is another possibility.

The research was published in the journal Nature Communications.

Source: Skoltech

https://newatlas.com/energy/cheap-sodiu ... y-density/
Responder