Compartir en las Redes !

Twitter Whatsapp Telegram Pinterest Linkedin Tumblr Reddit

Notas de energías renovables

Aquí puede comentar todo aquello que no sea de política, de economía, de temas sociales del día a día
Fermat
Mensajes: 1642
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Un tanto propaganda, pero de todas maneras..

Video: Wave-amplifying generator bounces twice as high as the swells
Loz Blain, March 07, 2024

Imagen
CorPower's 62-foot-high C4 has exceeded expectations in ocean testing CorPower

Sweden's CorPower has announced "breakthrough" results from Atlantic ocean testing of its full-scale floating generators, which cleverly time their motions to amplify smaller waves while protecting themselves against dangerous storm conditions.

In a mechanical sense, this is a pretty standard looking anchored buoy point absorber type system; waves lift a floaty air-filled chassis up and down, and a power takeoff system within harvests energy by converting that linear up and down movement into rotation for running generators.

CorPower says it's a novel phase control technology called WaveSpring that sets its huge C4 buoys apart. An internal pneumatic cylinder is pre-tensioned to pull the buoy downwards, such that in the absence of active control, the buoy simply sits still in "transparent" mode no matter how high the waves get. This acts as a safety mechanism under the worst conditions.


How it works- CorPower Ocean Wave Energy Converters

But when waves are more reasonable, things get weird and the C4 starts bobbing up and down twice as far as the amplitude of the waves, by adjusting the phase of its movements. That is, it doesn't rise at the exact same time as the wave does, it lags behind to get a little extra energy boost, which propels it higher.

The effect makes a huge difference to power generation; CorPower claims a 300% increase in power generation compared to a similar buoy without Wavespring phase adjustments.

It's also remarkable to watch, as you can see at around 0:45 in the video below – particularly given that these buoys are so dang big – 19 m (62 ft) tall and 9m (30 ft) in diameter.


Reflections after three months in the water.

CorPower has just hauled this C4 in after six months at an exposed test site in the Atlantic ocean off Aguçadoura, Portugal, where it's been connected to the grid and exporting power. In November, the weather treated CorPower to the perfect survivability test, delivering monster 18.5-m (61-ft) waves – higher than any previously measured. The C4 went into "transparent" mode and rode out the storm without issue.

The team recorded a peak power export around 600 kW, but says the device was limited in both velocity and stroke during the test. It expects to see peak output around 850 kW when it's run at full capacity.

Running test data against the C4's digital twin, CorPower engineers discovered they'd been slightly underestimating its power generation capabilities, so things are definitely on track there.

Now, the buoy is getting a planned checkup back on dry land, where it'll be studied to see how it's held up at sea, and upgrades and adjustments will be made before it's towed back to its site. That's one clear benefit of this kind of design; you can very easily hook and unhook these machines for maintenance back at port.

Getting down to tin tacks, CorPower has projected a Levelized Cost of Energy (LCoE) in the range of US$33-44 per megawatt-hour once it's deployed 20 gigawatts of capacity. That would be a pretty competitive price, given that wave energy is pretty much 24/7 and can fill in the gaps when wind and solar aren't delivering.


CorPower Ocean - Wave farms

20 GW is a whole lotta buoys though. More than 20,000 of them. So it'll take a while to get that LCoE down to a manageable level. Next step, says the company, will be a multi-buoy site where the concept can start to be tested in something closer to a commercial rollout.

Does this work at scale? We sure hope so, and to the extent that acreage is an issue on the high seas, CorPower says these things can extract 3-5 times more power from a given square kilometer of ocean than a floating offshore wind installation. But wave and tidal energy projects tend to move at a frustratingly slow pace – well, compared to things like large language model AIs, I suppose everything moves slowly.

And AI is part of the problem. Yes, the world needs to decarbonize its existing power generation capacity. Yes, we also need enough clean power to cover all the cars, trucks, furnaces and everything else that's electrified as we shoot for zero emissions by 2050.

Imagen
The generator and wavespring tech can be maintained on-site; the interior of the buoy is dry CorPower

But as Elon Musk recently pointed out, we'll also need to feed another rising behemoth as millions upon millions of high-powered AI chips start gulping electricity at horrendous rates to train and run next-gen AI models. Musk is predicting electricity shortages will start becoming a problem as early as next year.

So we'll need all the clean energy initiatives we can practically get operational. CorPower seems well-funded, it seems to have a decent-looking solution that's scalable, hardy and very close to production-ready. So get cracking, guys! We'd love to see it succeed at scale.

Source: CorPower

https://newatlas.com/energy/corpower-wavespring/
Fermat
Mensajes: 1642
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Biogás: mayor estabilidad de red y menor (necesidad de) almacenamiento gracias a un control innovador
Erneuerbare energien, 14/02/2023

Imagen
La planta de investigación de biogás de la Universidad de Hohenheim “Unterer Lindenhof” Eningen - © Eyb, Universidad de Hohenheim

El proyecto Powerland 4.2 muestra cómo las plantas de biogás flexibles pueden generar carga residual sin descuidar el suministro de calor. Y los operadores también pueden ahorrar.

Seguir suministrando electricidad y calor de forma flexible sin un gran depósito de gas: según los científicos, esto es posible con un innovador sistema de control para una planta de biogás. En el proyecto PowerLand 4.2, la Universidad de Hohenheim, la Universidad de Reutlingen y Novatech GmbH desarrollaron y probaron un sistema de control de este tipo para un sistema totalmente automatizado que suministra electricidad y calor renovables según sea necesario. Gracias a las previsiones de demanda de energía y a una alimentación adaptada y flexible, los operadores de plantas de biogás también podrían ahorrar en inversiones en mayores instalaciones de almacenamiento de gas, según un comunicado de prensa de la Agencia de Materias Primas Renovables (FNR).

El foco en la carga residual y el suministro confiable de calor a conjuntos habitacionales
El objetivo del proyecto fue la llamada carga residual en los deficits de energía solar y eólica: la electricidad procedente de plantas de biogás flexibles puede llenar el deficit entre la generación de electricidad eólica y solar, que depende de las condiciones meteorológicas, y la demanda real. El operador de biogás suele basar sus cálculos en los precios del mercado de intercambio de electricidad.

En el proyecto PowerLand 4.2, los investigadores querían ir más allá y centrarse en las necesidades de electricidad y calor de un conjunto habitacional. La planta de biogás debería proporcionar electricidad y calor de la forma más completa y automática posible. Los precios de intercambio de la electricidad no son suficientes para ello. Según los científicos, lo que se necesita es un sistema de control inteligente para la central combinada de cogeneración (CHP) de la planta de biogás. Este debe conocer y procesar información sobre las necesidades locales de electricidad y calor, los niveles de llenado de los sistemas de almacenamiento de calor y biogás y la producción de todos los demás sistemas renovables in situ para los próximos días y establecer calendarios razonables para la cogeneración y la alimentación futura de las plantas de biogas

Alimentación inteligente de la planta de biogás
Uno de los objetivos del proyecto era un método optimizado de control compatible con la red (eléctrica), basado en la necesidad de calor. Así, la cogeneración tenía que conectarse apenas hubiese necesidad de calor y el acumulador de calor estaba vacío, incluso sin necesidad de carga residual. En todos los demás casos, sin embargo, la CHP debería cerrar el déficit de energía. También era necesario alimentar la planta de biogás de forma tan "inteligente" que el lento proceso de biogás garantizara que estuviera disponible la cantidad adecuada de gas en el momento adecuado para el programa de cogeneración.

Según FNR, el investigador desarrolló un modelo práctico de predicción de la producción de biogás con un determinado suministro, así como un método basado en éste para diseñar planes de suministro ajustados a las necesidades de gas. Añade que en una prueba real que duró varias semanas en la estación de investigación "Unterer Lindenhof" de la Universidad de Hohenheim, el sistema demostró su utilidad. La estación cuenta con una planta de biogás, una red de calefacción y un consumo energético aproximadamente equivalente al de un pueblo de 130 habitantes. Especialmente para la prueba se instaló paneles fotovoltaicos, cuya producción estaba prevista en los modelos.

“La precisión del sistema es buena”
"El esfuerzo computacional necesario para calcular los planes de suministro es sorprendentemente bajo y la precisión del sistema es realmente buena", afirma el director del proyecto Andreas Lemmer de la Universidad de Hohenheim. En general, la desviación entre las necesidades de electricidad calculadas y reales fue del 4,4 por ciento, y la necesidad de calor entre el 7 y el 9 por ciento. También resultó que la cogeneración alivió la carga de las redes sin descuidar su papel como proveedor de calor: se liberó mucho menos exceso de electricidad a la red, y en caso de cuellos de botella, se importó de ella mucho menos electricidad.

"Una gran ventaja es que el operador recibe continuamente información sobre la relación entre la alimentación y la producción de gas resultante", continúa Lemmer. "Si esta relación cambia, podría ser un indicio de una interrupción incipiente del proceso".

La flexibilidad permite mayores ingresos por electricidad
Según los científicos, el control de plantas de cogeneración y de biogás desarrollado en PowerLand 4.2 también se puede utilizar fácilmente en otros lugares y es especialmente adecuado para sistemas que suministran calor a consumidores. Lo único que se necesita son los datos de funcionamiento, que normalmente se registran de todos modos. “La principal ventaja de nuestro enfoque en comparación con un sistema clásico y flexible es que, con la ayuda de una alimentación basada en las necesidades, podemos ahorrar costosas inversiones en instalaciones de almacenamiento de gas más grandes. En comparación con las plantas de biogás no flexibles y de funcionamiento continuo, los operadores también generan mayores ingresos por electricidad”, explica Lemmer. (kw)

https://www.erneuerbareenergien.de/tech ... -steuerung
Fermat
Mensajes: 1642
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Una nota de prensa del fabricante, pero de interés de todas maneras...

Lithium-free sodium batteries exit the lab and enter US production
C.C. Weiss, May 02, 2024

Imagen
Blue has become Natron Energy's signature color owing to the patented Prussian Blue electrons it uses for the fast, frequent transfer of sodium ions that underpin its claims of 10 times lithium-ion's cycling speeds and a 50,000-cycle lifespan Natron Energy

Two years ago, sodium-ion battery pioneer Natron Energy was busy preparing its specially formulated sodium batteries for mass production. The company slipped a little past its 2023 kickoff plans, but it didn't fall too far behind as far as mass battery production goes. It officially commenced production of its rapid-charging, long-life lithium-free sodium batteries this week, bringing to market an intriguing new alternative in the energy storage game.

Not only is sodium somewhere between 500 to 1,000 times more abundant than lithium on the planet we call Earth, sourcing it doesn't necessitate the same type of earth-scarring extraction. Even moving beyond the sodium vs lithium surname comparison, Natron says its sodium-ion batteries are made entirely from abundantly available commodity materials that also include aluminum, iron and manganese.

Furthermore, the materials for Natron's sodium-ion chemistry can be procured through a reliable US-based domestic supply chain free from geopolitical disruption. The same cannot be said for common lithium-ion materials like cobalt and nickel.

Sodium-ion tech has received heightened interest in recent years as a more reliable, potentially cheaper energy storage medium. While its energy density lags behind lithium-ion, advantages such as faster cycling, longer lifespan and safer, non-flammable end use have made sodium-ion an attractive alternative, especially for stationary uses like data center and EV charger backup storage.

Founded in 2013, Natron has been one of the pioneers in this new wave of sodium-ion research and innovation. And while most sodium-ion designs remain in the laboratory, Natron has switched on one of the first major production operations globally. It celebrated the official production kick-off earlier this week with a ribbon-cutting ceremony at its Holland, Michigan manufacturing facility, calling it the first-ever commercial-scale production of sodium-ion batteries in the US.

"Sodium-ion batteries offer a unique alternative to lithium-ion, with higher power, faster recharge, longer lifecycle and a completely safe and stable chemistry," Natron founder and co-CEO Colin Wessells said at the event. "The electrification of our economy is dependent on the development and production of new, innovative energy storage solutions. We at Natron are proud to deliver such a battery without the use of conflict minerals or materials with questionable environmental impacts."

Imagen
Natron has begun production at its Holland, Michigan facility Natron Energy

Natron says its batteries charge and discharge at rates 10 times faster than lithium-ion, a level of immediate charge/discharge capability that makes the batteries a prime contender for the ups and downs of backup power storage. Also helping in that use case is an estimated lifespan of 50,000 cycles.

We haven't seen a weight-based energy density figure from Natron itself, but a 2022 article from Chemical & Engineering News put its sodium-ion batteries at 70 Wh/kg, around the very bottom of the sodium-ion energy density scale. That aligns well with the company's stationary-only business plan, as sodium-ion batteries being pursued for potential mobility use have more than double that density. CATL showed a 160 Wh/kg sodium-ion battery in 2021 and has plans to increase that density over 200 Wh/kg to better meet the needs of electric vehicles.

Natron's plans call for the Holland facility to crank production up to 600 megawatts annually at full tilt, serving as a model for future gigawatt-scale facilities. In the two years since we last looked at Natron's plans, AI has grown a whole lot more power-hungry so it's not surprising the company's initial target is AI data storage centers, where it's fast-cycling batteries could become an essential power management tool. It plans to begin the first deliveries in June.

Natron intends to expand its focus to other industrial power markets in the future, mentioning EV fast-charging and telecommunications as targets.
Source: Natron

https://newatlas.com/energy/natron-sodi ... on-startt/
Fermat
Mensajes: 1642
Registrado: Mié Mar 02, 2022 5:42 am

Re: Notas de energías renovables

Mensaje por Fermat »

Otra noticia/publireportaje pero interesante idea igual.

Sea-bed 'air batteries' offer cheaper long-term energy storage
Loz Blain, 06/05/2024

Imagen
BaroMar says its undersea compressed energy storage system creates an air battery cheaper than any other for long-duration storage - BaroMar

Israeli company BaroMar is preparing to test a clever new angle on grid-level energy storage, which it says will be the cheapest way to stabilize renewable grids over longer time scales. This innovative system lets water do the work.

The zero-carbon energy grid of the future looks remarkably complex. Solar, wind and other renewable energy sources will all contribute power when they can – but this won't match up with demand, so energy storage and release measures will be critical. And these will be needed for a range of different time scales. Some will need to smooth out daily peaks and troughs. Others will operate between days and weeks, filling in when overcast weather makes for a couple of days of poor solar output.

And then there's long-duration storage, which will attempt to stash electrons for the winter, when there'll be a seasonal lull in solar generation that wind might not make up. That's the area BaroMar wishes to address with its interesting take on compressed air energy storage (CAES).

CAES involves using excess energy to run compressors, typically pumping air into large, rigid tanks where it can be stored at high pressures, then released through some kind of turbine that can drive a generator to recover the energy. It's already quite a cost-effective energy storage option – but BaroMar says it can beat traditional systems over long-duration energy storage using an amusingly low-tech solution.

Imagen
Cages full of heavy rocks pin these cheap concrete/steel tanks to the sea floor BaroMar

Basically, the company's plants will be stationed near coastlines with access to deep water. And instead of large high-pressure tanks, BaroMar uses the pressure of the water column to store compressed air in much cheaper enclosures.

We're talking a series of big, cheap, dumb, concrete and steel tanks with cages full of rocks on top of them, to keep them submerged at between 200-700-meter (650-2,300-ft) depths. These tanks have a number of water-permeable valves around them and start out completely full of seawater. The compressor and generator systems live close by on dry land, and when there's excess energy to be soaked up, the compressor feeds ambient air down to these tanks through long hoses at 20-70 bar (290-1,015 psi), depending on the depth.



BaroMar - Sustainable and cost effective underwater Compressed Air Energy Storage
The compressed air forces water out of the tanks – but since the hydrostatic pressure of the external water equalises against the internal air pressure, the tanks don't need to be anywhere near as strong or expensive as land-based tanks that need to hold high-pressure internal air against regular atmospheric pressure on the outside.

When it's time to recoup the energy, the system allow air to run back up the hose into a thermal recovery system, followed by a turbo-expander that drives a generator. At the other end, water rushes back into the tank, ready to be displaced again when the compressor is running.

According to engineering consultancy Jacobs, which has been appointed to design a pilot project in Cyprus, the target is a round-trip efficiency around 70% – about the same as the world's largest CAES plant (a 100-MW, 400 MW/h installation in Zhangjiakou, northern China), and a very high efficiency compared to traditional compressed air systems. This underwater pilot will, of course, be much more modest, storing just 4 MWh.

Imagen
Energy is recovered through a turbo expander/generator at a targeted 70% round-trip efficiency BaroMar

BaroMar claims it should beat competing long-duration energy storage (LDES) options on cost, thanks to its long-lasting, very low-cost tanks and low-to-zero underwater maintenance costs. Running a 100 MW/1 GWh installation 350 days per year for 20 years, BaroMar says it can deliver a Levelized Cost of Storage (LCoS) of US$100 per MWh, as compared to "other LDES technologies" which, it claims, come in closer to $131/MWh.

Of course, there are challenges with anything that's designed to operate for 20 years under the sea. Jacobs, tasked with actually designing the thing to a standard that can be built, hints at the hurdles ahead. "This project requires extensive geophysical, geotechnical and bathymetric surveying, investigation, feasibility studying and permitting for tank installation at deep depths for onshore mechanical and electrical equipment needs," said Jacobs Vice President Fiachra Ó Cléirigh in a press release.

Still, the cost-effective and scalable solutions are going to win in the new renewable grids – and if BaroMar's idea does what the company claims, it'll be relevant to plenty of locations, since cities are so often close to the coast. We look forward to hearing more about this project.

Source: BaroMar and Jacobs via CleanTechnica

https://newatlas.com/energy/baromar-com ... nderwater/
Responder